

MONITORING YEAR 6 ANNUAL REPORT FINAL

DEVIL'S RACETRACK MITIGATION SITE

Johnston County, NC NCDEQ Contract 003989 DMS Project Number 95021 USACE Action ID Number 2012-00810 NCDWR Project Number 12-0747

Data Collection Period: March - November 2019 Draft Submission Date: December 20, 2019 Final Submission Date: February 20, 2020

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

February 20, 2020

Jeremiah Dow NCDEQ Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

RE: Monitoring Year 6 Report Comments for Devil's Racetrack Mitigation Site (95021) Neuse River Basin – CU# 03020201; Johnston County, North Carolina Contract No. 003989

Dear Mr. Dow,

We have reviewed the comments on the Monitoring Year 6 Report for the above referenced project dated February 17, 2020 and have revised the report based on these comments. The revised documents are submitted with this letter. Below are responses to each of your comments. For your convenience, the comments are reprinted with our response in italics.

- 1. Section 1.2.4
 - a. It may not be appropriate to remove sediment from Southeast Branch in MY7. The source of the sediment (farm field) and cause (above average rainfall) are factors that will persist after closeout, and the stream should be assessed on its ability to respond to storms and resulting sediment pulses.

We understand your concern and that this will likely be a concern raised during IRT review. However, this is the first time since construction sediment has deposited in the upper section of Southeast Branch. It was due to a single slope failure in the adjacent farm field which caused a large slug of sediment to aggrade the upper 100 feet of channel. While the channel was beginning to process the sediment and move it downstream, we excavated some material with shovels to help speed the process. We believe this aggradation is not a common occurrence and thought it was appropriate to remove the excess sediment. We have added language clarifying the scope of the aggradation and sediment removal.

- 2. Section 1.2.5
 - a. 2nd paragraph: Please add a sentence briefly summarizing prior monitoring years' achievement of success criteria for the three flow gauges referenced.

A sentence was added to Section 1.2.5 summarizing prior years monitoring data for the three referenced flow gauges.

- 3. Section 1.2.6
 - a. First paragraph: Please add a sentence discussing removal of groundwater gage 34 in MY6. Also, please clarify the last sentence that states "...beginning of the growing season was extended by 20 days from March 21 to March 1..." Extended compared to MY5 or NRCS WETS data?

Two sentences were added discussing the removal of groundwater gage 34 in monitoring year 6.

The last sentence of the first paragraph was updated to clarify the growing season start date was adjusted from the NRCS WETS start date based on soil temperature data.

- 4. Appendix 1
 - a. Figure 3.1 & 3.2: Please show flow gauge and crest gauge locations on the CCPVs.

Flow gauges and crest gauges were added to the CCPV maps.

b. Table 6: It seems likely that Devils Racetrack East could be a potential candidate for inclusion in this table for continuing concern regarding bare areas and/or poor growth rates, specifically since these concerns were referenced in the Maintenance Plan section.

The area east of Devil's Racetrack Road was added to areas of poor vigor due to the smaller than expected tree height during monitoring year 6.

- 5. Appendix 4
 - a. Some cross sections are missing the bankfull line (hardcopy only, electronic copy has all bankfull lines).

Bankfull lines are now present on all hardcopy cross sections.

- 6. Appendix 5
 - a. Table 13: This table should be cumulative for prior years. We also recommend adding a cumulative flow gauge table.

Table 13 was updated to be cumulative for prior years of bankfull event data. A cumulative flow gauge table was added to Appendix 5.

7. Based on groundwater gauge data and the hydric soils delineation by Mr. Kevin Martin, it seems possible that additional wetland credits could be unrealized in the area of gauge 26.

Two additional groundwater wells were placed in the area of groundwater well 26 to gain a better understanding of this area. We recognize that some portion of this area may not ultimately achieve wetland success and have added the wells to attempt to minimize credit loss.

If you have any questions, please contact me by phone (919) 851-9986, or by email (jlorch@wildlandseng.com).

Sincerely,

Jason Lorch, Monitoring Coordinator

PREPARED BY:

Wildlands Engineering, Inc. 312 West Millbrook Road, Suite 225 Raleigh, NC 27609

Jason Lorch

jlorch@wildlandseng.com Phone: 919.851.9986

EXECUTIVE SUMMARY

Wildlands Engineering (Wildlands) completed a full-delivery project for the North Carolina Division of Mitigation Services (DMS) to restore and enhance a total of 18,748 linear feet (LF) of stream and restore 59.70 acres (ac) of wetlands in Johnston County, North Carolina. The project streams consist of five unnamed tributaries (UTs) to the Neuse River. The largest of these streams, Devil's Racetrack Creek (East and West), drains directly to the Neuse River. The other four streams are small headwater tributaries to Devil's Racetrack Creek (Southwest Branch, Middle Branch, Southeast Branch, and North Branch). The project proposes to provide 18,215 stream mitigation units (SMU's) and 58.50 wetland mitigation units (WMU's). At the downstream limits of the project, the drainage area is 831 acres (1.30 square miles).

The Devil's Racetrack Mitigation Site, hereafter referred to as the Site, is located in eastern Johnston County along Devil's Racetrack Road just east of its intersection with U.S. Highway 701 and approximately one mile east of Interstate 95 (Figure 1). The Site is located in the western portion of the Inner Coastal Plain Physiographic Province (USGS, 1998) within the North Carolina Division of Water Resources (NCDWR) subbasin 03-04-02 of the Neuse River Basin (United States Geological Survey (USGS) Hydrologic Unit 03020201140010).

Prior to construction activities, the streams had been relocated and channelized and the surrounding wetland complex had been drained for agricultural purposes. The primary objectives of the project were to re-establish wetland hydrology, restore a Coastal Plain Small Stream Swamp wetland community, restore a Coastal Plain stream system to promote hydrologic connectivity with the floodplains and wetlands, stabilize stream banks, promote instream habitat and aeration, restore riparian buffers, and further improve water quality through removing existing agricultural practices. Figure 2 and Table 1 present the restoration and enhancement design for the Site.

The following project goals were established to address the effects listed above from watershed and project site stressors:

- Restore a large wetland complex to a naturally occurring community to improve riparian habitat and water quality;
- Restore a network of badly degraded stream channels, including multiple headwater streams, to create aquatic habitat and further improve water quality to receiving waters; and
- Restore riparian buffers along stream corridors for additional habitat and water quality benefits.

Stream and wetland restoration and enhancement construction efforts were completed in February 2014. Baseline as-built monitoring activities (MYO) were completed between January and February 2014. A conservation easement is in place on 96.065 acres of restored wetland and riparian stream corridors to protect them in perpetuity.

Monitoring Year 6 (MY6) assessment and site visits were completed between the months of March and November 2019 to assess the conditions of the project. Overall, the Site has met the required vegetation, hydrology, and stream success criteria for MY6. The overall MY6 average planted stem density for the Site is 557 planted stems per acre, which is greater than the year seven density requirement of 210 stems per acre. All restored and enhanced streams are stable and functioning as designed. Southeast Branch, Southwest Branch, and Middle Branch all had pressure transducers installed to monitor stream flow. All three stream gages met the hydrologic criteria for MY6. Of the 37 groundwater monitoring wells on the Site, 29 met the success criteria (water table with 12 inches of the ground surface for 8.5% of the growing season consecutively), three gages malfunctioned during the early part of the growing season, and five

did not met criteria. Out of the five groundwater wells that didn't meet success criteria for MY6, three were within wetland areas determined to be at risk. Invasive and undesired competing vegetation will continue to be monitored and treatments will be applied if necessary. The vegetation on the east side of Devil's Racetrack has improved drastically.

DEVIL'S RACETRACK MITIGATION SITE

Monitoring Year 6 Annual Report

TABLE OF CONTENTS

Section 1	PROJECT OVERVIEW	1-1
1.1	Project Goals and Objectives	
1.2	Monitoring Year 6 Data Assessment	1-2
1.2.1	-	
1.2.2	-	1-3
1.2.3		1-3
1.2.4	Stream Areas of Concern	1-4
1.2.5	Hydrology Assessment	1-4
1.2.6		1-4
1.2.7	Maintenance Plan	1-6
1.3	Monitoring Year 6 Summary	1-6
	METHODOLOGY	
	REFERENCES	

APPENDICES

Appendix 1	General Tables and Figures
Figure 1	Project Vicinity Map
Figure 2a-b	Project Component/Asset Map
Table 1	Project Components and Mitigation Credits
Table 1A	Project Mitigation Credit History
Table 2	Project Activity and Reporting History
Table 3	Project Contacts Table
Table 4	Project Information and Attributes
Appendix 2 Figure 3.0-3.2 Table 5a-f Table 6	Visual Assessment Data Integrated Current Condition Plan View Visual Stream Morphology Stability Assessment Table Vegetation Condition Assessment Table Stream Photographs Vegetation Photographs
Appendix 3	Vegetation Plot Data
Table 7	Vegetation Plot Criteria Attainment
Table 8	CVS Vegetation Table - Metadata
Table 9	Planted and Total Stem Counts (Species by Plot with Annual Means)
Appendix 4 Table 10a-f Table 11a-f Table 12a-f	Morphological Summary Data and Plots Baseline Stream Data Summary Morphology and Hydraulic Summary (Dimensional Parameters – Cross Section) Monitoring Data – Stream Reach Data Summary Cross Section Plots

Appendix 5 Hydrology Summary Data and Plots

- Table 13Verification of Bankfull Events
- Table 14In-Stream Flow Gage Attainment Summary
- Table 15Wetland Gage Attainment Summary
 - Groundwater Gage Plots Soil Temperature Probe Plots In-Stream Flow Gage Plots Monthly Rainfall Data Pre and Post Construction Groundwater Gage Comparison Plots
 - Detailed Hydric Soil Investigation

Section 1: PROJECT OVERVIEW

The Devil's Racetrack Mitigation Site, hereafter referred to as the Site, is located in eastern Johnston County within the Neuse River Basin (USGS Hydrologic Unit 03020201) near the town of Four Oaks, North Carolina. The Site is located along Devil's Racetrack Road just east of its intersection with U.S. Highway 701 and approximately one mile east of Interstate 95. The Site is in the western portion of the Inner Coastal Plain Physiographic Province (USGS, 1998). The project watershed consists primarily of agricultural lands and forest. The only significant development in the watershed is a campground adjacent to Devil's Racetrack Creek on the western portion of the project site, a middle school in the upper portion of the watershed, a low-density subdivision with single family homes, and a small section of I-95. The drainage area for the project site is 831 acres (1.30 square miles) at the lower end of Devil's Racetrack Creek (East).

The project stream reaches include Devil's Racetrack Creek (East and West), Southwest Branch, Middle Branch, Southeast Branch, and North Branch (stream restoration and/or enhancement level I/II approach). Mitigation work within the Site included restoration and enhancement of 18,748 linear feet (LF) of perennial and intermittent stream channel and restoration of 59.7 acres (ac) of riparian wetlands. The stream and wetland areas were also planted with native vegetation to improve habitat and protect water quality. The final mitigation plan was submitted and accepted by the DMS in January of 2013. Construction activities were completed by Land Mechanic Designs, Inc. (East Side) and Fluvial Solutions (West Side) in February 2014. Planting and seeding activities were completed by Bruton Natural Systems, Inc. in February 2014. Baseline monitoring (MYO) was conducted between December 2013 and February 2014. Annual monitoring will be conducted for seven years with the close-out anticipated to commence in 2021 given the success criteria are met. Appendix 1 provides more detailed project activity, history, contact information, and watershed/site background information for this project.

A conservation easement has been recorded and is in place along the stream and wetland riparian corridors to protect them in perpetuity; 96.065 ac (Deed Book 4221, Page 419-433) within two tracts owned by Nell Howell Revocable Trust. The project provides 18,215 stream mitigation units (SMU's) and 58.50 wetland mitigation units (WMU's). Directions and a map of the Site are provided in Figure 1 and project components are illustrated in Figures 2a and 2b.

1.1 Project Goals and Objectives

Prior to construction activities, the streams had been relocated and channelized with the surrounding wetland complex drained for agricultural purposes. Stream valleys and other low areas were filled to raise wet areas and level the fields. At the same time the streams were straightened, and riparian vegetation was also removed. The project area west of Devil's Racetrack Road was used for row crop agriculture and the eastern portion was used for timber production.

The channelization of streams on the Site resulted in severely over-enlarged channels that were extremely deep in many locations. The alterations of the Site to promote farming practices resulted in complete elimination of the ecological function of this small stream/wetland complex. Specifically, functional losses at the Site include degraded aquatic habitat, altered hydrology (related to loss of floodplain connection and lowered water table), and reduction of amount and quality of riparian wetland habitats and related water quality benefits. Ongoing bank erosion was also occurring at some locations due to high, overly steep banks and lack of bank vegetation. Table 4 in Appendix 1 and Tables 10a through 10f in Appendix 4 present the pre-restoration conditions in detail.

The Site was designed to meet the over-arching goals as described in the Mitigation Plan (Wildlands, 2013). The project is intended to provide numerous ecological benefits within the Neuse River Basin. While many of these benefits are limited to the Devil's Racetrack Creek Site project area, others, such as pollutant removal and improved aquatic and terrestrial habitat, have more far-reaching effects. The following project specific goals established in the Mitigation Plan include:

- Restore a large wetland complex to a naturally occurring community to improve riparian habitat and water quality;
- Restore a network of badly degraded stream channels, including multiple headwaters streams, to create aquatic habitat and further improve water quality to receiving waters; and
- Restore riparian buffers along stream corridors for additional habitat and water quality benefits.

Secondary project goals established in the Mitigation Plan were to restore fish passage from the Neuse River to Devil's Racetrack Creek. This is a secondary goal because success will not be measured during monitoring.

The primary project goals were addressed through the following project objectives:

- Promote wetland hydrology by raising channelized stream beds and filling drainage ditches;
- Plant wetland areas with native tree species to restore a Coastal Plain Small Stream Swamp Blackwater Subtype community;
- Reconstruct stream channels to have the appropriate slope, planform, and cross-sectional geometry for the region of the Coastal Plain in which the project is located;
- Size reconstructed stream channels to flood floodplains and wetlands frequently;
- Stabilize stream banks using bioengineering, natural channel design techniques, and grading to reduce bank angles and bank height;
- Install in-stream structures and woody debris to promote aeration of water, create habitat, and influence the creation of bed forms commonly found in sand bed channels;
- Restore riparian buffer areas with native tree species to stabilize channels, filter flood flows and runoff, and supplement wetland plantings; and
- Remove project area from agricultural production further improving water quality.

The design streams and wetlands were restored to the appropriate type based on the surrounding landscape, climate, and natural vegetation communities but also with strong consideration to existing watershed conditions and trajectory. The mitigation project was developed to restore a large stream/wetland complex directly adjacent to the Neuse River to a naturally occurring community to create riparian and wetland habitat and improve water quality. Other intentions of the design were to create stable habitats, improve riparian buffers, and restore the natural migration patterns for anadromous and other fish for spawning.

1.2 Monitoring Year 6 Data Assessment

Annual monitoring and quarterly site visits were conducted during MY6 to assess the condition of the project. The stream and wetland mitigation success criteria for the Site follow the approved success criteria presented in the Mitigation Plan.

1.2.1 Vegetative Assessment

A total of 51 10-meter by 10-meter vegetation plots were established within the Site during baseline monitoring. The final vegetation success criteria is the survival of 210 planted stems per acre averaging 10 feet in height at the end of the seven year monitoring period (MY7).

The MY6 vegetative survey was completed in August 2019. The 2019 vegetation monitoring data suggests a site wide average planted stem density of 557 stems per acre which is greater than the MY7 requirement of 210 stems per acre, but approximately 21% less than the stem density recorded in MY0. Individual plot data suggests planted stem density ranges from 162 to 769 planted stems per acre. When including volunteer stems, the site wide average number of stems per acre is 781. This is above the MY7 requirement. Fifty of the 51 vegetation plots met success criteria for MY6 and are on track to meet the success criteria required for MY7 (Table 9, Appendix 3). Vegetation Plot 49 averaged 162 planted stems per acre; however, when volunteer stems are included the density is 243 stems per acre which is above the final success criteria of 210 planted stems per acre. Refer to Appendix 2 for vegetation plot photographs and the vegetation condition assessment table and Appendix 3 for vegetation data tables.

1.2.2 Vegetation Areas of Concern

Even though vegetation plot 49 does not meet the final success criteria, when including volunteer species this plot meets the final success criteria of 210 stems per acre. Therefore, no remedial actions are proposed in this area at this time.

The restoration area east of Devil's Racetrack Road continued to receive significant treatment to improve the soil quality and herbaceous cover. Approximately 5,000 pounds of fertilizer and 32,000 pounds of pelletized lime were applied across the area during MY6. Additionally, the area was seeded with over 100 pounds of a native seed mix and live stakes were planted along Devil's Racetrack (East). Herbaceous cover and tree densities are sufficient; however, tree vigor is lower than expected for monitoring year 6. This area has drastically improved and will continue to be monitored and remedial actions will be taken as necessary.

An area of Chinese privet (*Ligustrum sinense*) on the west side of the project between Devil's Racetrack (West) and North Branch was treated in September 2019. The contractor is scheduled to conduct a second treatment on this area in the winter of 2019/2020. Scattered, low densities of Chinese privet were also treated across the Site and will be assessed to determine if further treatment is necessary during the winter. The Current Condition Plan View in Appendix 2 shows vegetation areas of concern.

Loblolly pine (*Pinus taeda*) has continued to volunteer across the site. In January of 2019, pines were cut across the site to keep them from competing with desirable vegetation. Wildlands will continue to monitor and treat loblolly pine as necessary during subsequent monitoring years.

1.2.3 Stream Assessment

Morphological surveys for MY6 were conducted in April 2019. All streams within the Site are stable and met success criteria for MY6. In general, cross sections for all streams showed little to no change in bankfull area, maximum depth ratio, or width-to-depth ratio. Cross section surveys show that the bank height ratios remain at or very near 1.0. Entrenchment ratios vary slightly from year to year due to minor changes in bankfull widths. Small adjustments in width occur due to vegetation, sediment deposition, and many other factors. These minor changes do not indicate channel instability. Surveyed riffle cross sections fell within the parameters defined for channels of the appropriate Rosgen stream type.

Cross section 8 on Devil's Racetrack (West) has maintained a consistent bankfull width but has increased in depth and area. This is due to the location of the cross section within the shallow. The shallow was built with logs buried perpendicular to the stream banks at the stream bed elevation to provide grade control. These logs create micro pools within the shallow. Cross section 8 was placed downstream of a log in a micro pool. Cross section 8 is representative of micro pools and is stable and performing as expected, even though there is an increase in depth and area.

Longitudinal profile surveys are not required on the project unless visual inspection indicates reach wide vertical stability concerns. Refer to Appendix 2 for the visual stability assessment table, the CCPV map, and reference photographs. Refer to Appendix 4 for the morphological data and plots.

1.2.4 Stream Areas of Concern

The upper most one hundred feet of Southeast Branch aggraded with sediment from the upstream agricultural field during MY6. This happened over the winter when the farm field did not have a cover crop and above average rainfall occurred. A single slope failed in the adjacent farm field which caused a large slug of sediment to aggrade in the channel. While the channel was beginning to process the sediment and move it downstream, some material was excavated with shovels to help speed up the process. This area will be monitored during MY7 and remedial actions will be taken if necessary.

At the end of 2018 several beaver dams were observed along Devil's Racetrack (West). The USDA removed beaver from the Site and there were no signs of beaver activity during 2019. The site will be monitored for future beaver activity during subsequent monitoring years.

1.2.5 Hydrology Assessment

At the end of MY7, two or more bankfull events must have occurred during separate years within the restoration reaches. Multiple bankfull events were recorded on all the streams with crest gages and pressure transducers during the MY6 data collection. All streams on the Site had multiple bankfull events during MY1, MY2, MY3, MY4, and MY5. Therefore, the Site has met the required bankfull flow success criterion.

Flow Gauges were installed on Southwest Branch, Southeast Branch, and Middle Branch to measure stream flow. These pressure transducers were installed to show that the streams have adequate flow for a portion of the year and are not ephemeral ditches. Per discussion with the Interagency Review Team (IRT), continuous flow must be documented for at least 30 consecutive days during normal precipitation circumstances on these streams. Stream flow must be documented to occur intermittently in all months other than July through September. Southwest Branch showed consistent flow throughout MY6. Middle Branch showed consistent flow for 276 consecutive days despite a gage malfunction from October to early December. Southeast Branch maintained flow for 117 consecutive days, from the beginning of the year until the end of April. All three streams have met the flow success criterion for MY6. All three streams have easily exceeded stream flow criteria in all previous monitoring years except Southeast Branch during MY2 when the gage malfunctioned most of the year. Refer to Appendix 5 for hydrologic data.

1.2.6 Wetland Assessment

Thirty-four groundwater monitoring gages were established during the baseline monitoring, four additional gages were added during MY2, and three gages were added during MY5. Groundwater gage 34 was removed during MY6 due to poor performance. The area around gage 34 is already categorized as wetland credits at risk and likely won't generate wetland credits. Groundwater gages 8, and 32 were placed outside of wetland boundaries to capture the extent of the wetlands and were removed during

MY5. Groundwater gage 10 performed poorly and was removed during MY4. The wetland area around groundwater gage 10 was adjusted during MY4 as well. All the gages were installed at appropriate locations so that the data collected will provide an indication of groundwater levels throughout the Site. To provide data for the determination of the growing season, three soil temperature probes (2 on the west side and 1 on the east side) have been installed at a depth of twelve inches. A barotroll logger (to measure barometric pressure used in the calculations of groundwater levels with well transducer data) was also installed on the Site. All monitoring gages were downloaded and maintained on an as needed basis. The success criterion for wetland hydrology is there must be a free groundwater surface within 12 inches of the ground surface for a consecutive 8.5 percent of the growing season, during normal precipitation conditions. During MY1 NRCS WETS Data was used to determine the growing season for the Site. After discussions with the United States Army Corps of Engineers (USACE), it was agreed to use on-site soil temperature data to determine the beginning of the growing season and use NRCS WETS data to determine the end of the growing season. During MY6 the beginning of the growing season was extended by 20 days from the NRCS WETS start date of March 21 to March 1 based on soil temperatures staying above 41 degrees Fahrenheit at 12 inches below the ground surface.

The USACE requested pre-construction groundwater well data be overlaid on hydrographs with the current monitoring year groundwater well data to see how groundwater levels are recharging after rain events on the Site. Wildlands overlaid the pre-construction groundwater well data with the closest monitoring groundwater well data and rain data. These plots suggest that the Site drained more rapidly and to greater depths prior to restoration. Refer to Appendix 5 for pre and post construction groundwater gage comparison plots.

Of the 37 groundwater monitoring wells on the Site, 29 met the success criteria (water table within 12 inches of the ground surface for 8.5% of the growing season consecutively), three gages malfunctioned in the spring when they are most likely to meet wetland success criterion, and five gages did not meet the success criterion. Of the 29 wells that met the success criterion, hydroperiods ranged from 11.5% to 29.5%. Groundwater wells 7, 21, and 22 malfunctioned during the spring of 2019. Wells 7 and 21 have met success criteria every year in the past and well 22 met 4 of the past 5 monitoring years. These three wells most likely would have met success criteria if they did not malfunction. Of the five wells that did not meet success criteria three are in wetland areas at risk. Wells 20 and 23 are along the Site boundary near North Branch. The eastern property boundary in this area is an open ditch that was not filled during construction due to hydrologic trespass constraints. This ditch may be partially draining the groundwater in this area. Wells 40 and 41 were added during MY5 to measure wetland hydroperiod farther west of the ditch. Both of these wells recorded hydroperiods well in excess of the criterion threshold during MY5 and MY6. Well 13 is in an area along the easement boundary between Middle Branch and Southeast Branch near vegetation plot 16. Well 26 recorded a hydroperiod of 7.3% during MY6 which does not meet the wetland success criterion. The hydroperiod recorded at well 26 met the success criterion during MY1 - MY3 but has not met success criterion during MY4-MY6. The landscape around this well is no different than other groundwater wells in the area, however it is located within the area used for staging equipment during construction. This old staging area likely has compacted soils that may be limiting groundwater from freely moving to the ground surface, but it is not obvious if this is causing the poor performance of well 26. An additional groundwater well will be added outside the limits of the old staging area near well 26 to help determine if the compacted soils from the old staging area are affecting groundwater in this area.

During MY6 a licensed soil scientist observed soil profiles in proximity to groundwater wells that were marginal in attaining the success criterion. The purpose of this investigation was to document the presence or absence of soil-based indicators of a contemporary, persistent high water table in these

questionable areas. The study areas are denoted by the orange boundary on the LSS report figure. The detailed report is attached in Appendix 5. Evidence of contemporary wetland hydrology was observed throughout the westernmost study area with the exception of a previous haul road which was slightly elevated. A portion of this area was classified as wetland credit at risk. Boring 10 was located within the at risk area, and evidence of a contemporary wetland hydrology regime was observed. Evidence of persistent saturation was also observed throughout the entire study area surrounding GW5 and GW6. The at risk study area surrounding boring 05, boring 06, and GW 34 exhibited only weak evidence of saturation. This area may not have a persistent wetland hydrology regime. Evidence of a contemporary wetland hydrology regime was observed throughout the entirety of the study area surrounding GW13 and boring 01, including the at risk area that lies within. All soil profiles observed within the study area surrounding borings 02, 03, 04, and GW24 exhibited evidence of contemporary wetland hydrology. The area surrounding boring 08 and GW 26 contained a potential upland area with non-hydric soil. The remainder of this study area contained evidence of contemporary wetland hydrology. A potential upland area was identified within the study area surrounding GW20 and GW23 which generally corresponds with the area previously placed at risk. The entire study area east of Devil's Racetrack road exhibited contemporary evidence of a persistent high water table.

1.2.7 Maintenance Plan

Privet will be treated for on the Site during the winter of 2019/2020, especially in the area along North Branch. Pines, and sweetgum will be monitored during subsequent monitoring years and will be treated as necessary. Beaver activity will be monitored and dealt with as necessary.

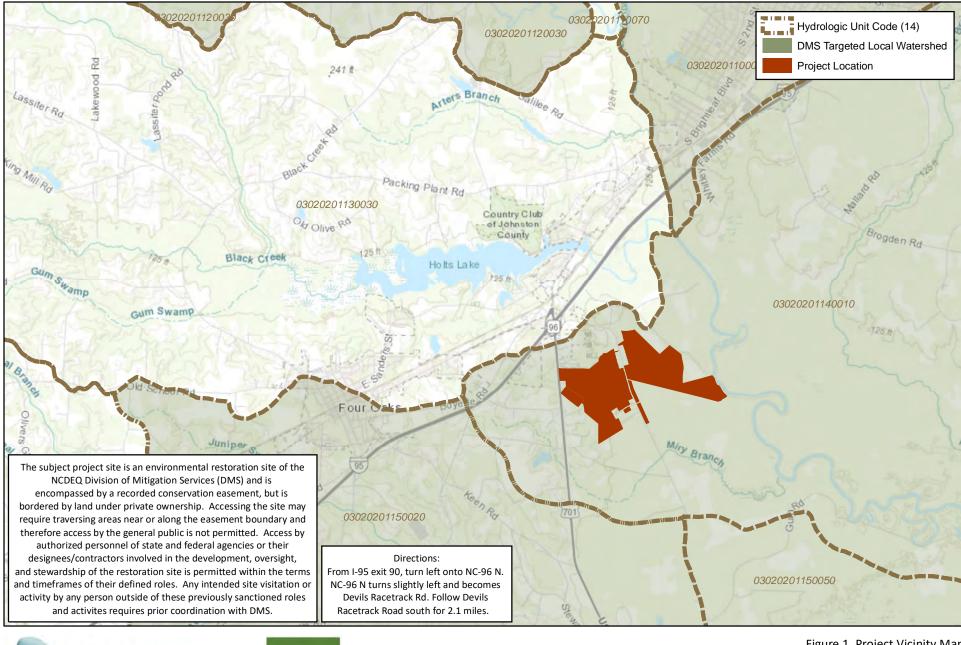
Wildlands will monitor the soil quality of the eastern side of the Site by taking regular soil samples. Additional amendments will be applied based on the results of these soil tests. This area will also be monitored for areas with low herbaceous cover and re-seeded if necessary.

1.3 Monitoring Year 6 Summary

Vegetation plot data suggests the Site is on track to meeting the MY7 success criteria. Only one plot fell short of the planted stem density criterion, but this plot exceeds the criterion threshold when including volunteer stems. All streams within the Site are stable and functioning as designed. Each stream documented multiple bankfull events during MY6. Of the 37 groundwater monitoring wells on the Site, 29 met the success criteria (water table with 12 inches of the ground surface for 8.5% of the growing season consecutively), three of the gages malfunctioned, three were in areas of wetlands deemed to be at risk for credit, and two didn't met success criteria. Invasive and undesired competing vegetation will continue to be monitored and treatments will be applied if necessary. The vegetation on the east side of Devil's Racetrack has improved drastically. Soil samples will be taken regularly on the east side of the project and additional lime and fertilizer will be applied based on the results of the soil tests.

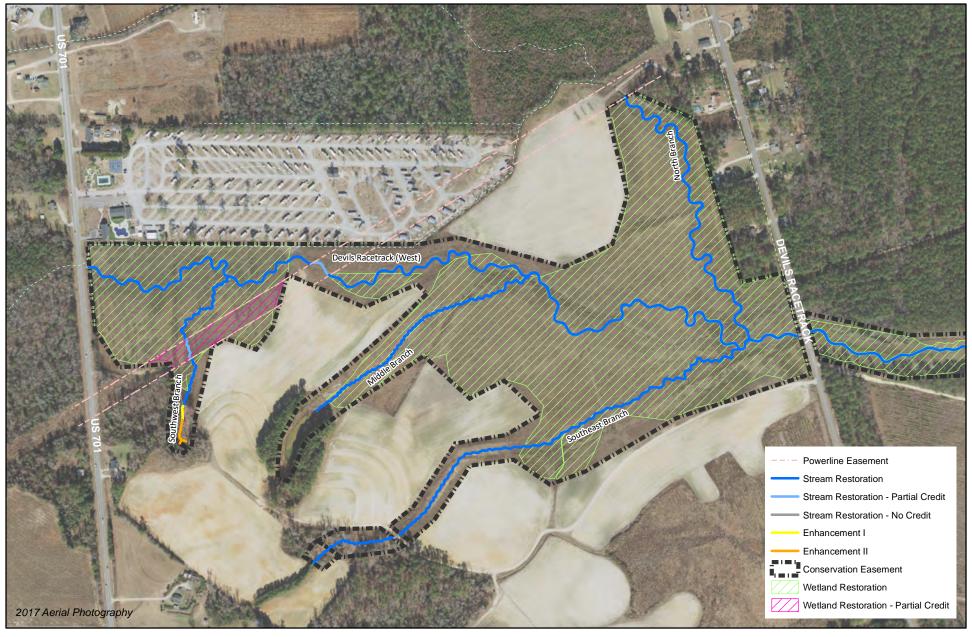
Summary information and data related to the success of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Mitigation Plan documents available on DMS's website. All raw data supporting the tables and figures in the appendices are available from DMS upon request.

Section 2: METHODOLOGY


Geomorphic data was collected following the standards outlined in The Stream Channel Reference Site: An Illustrated Guide to Field Techniques (Harrelson et al., 1994) and in the Stream Restoration: A Natural Channel Design Handbook (Doll et al., 2003). All the Integrated Current Condition Mapping was recorded using a Trimble handheld GPS with sub-meter accuracy and processed using Pathfinder and ArcGIS. Crest gages and pressure transducers were installed in surveyed riffle cross sections and monitored quarterly. Hydrology attainment installation and monitoring methods are in accordance with the USACE (2003) standards. Vegetation monitoring protocols followed the Carolina Vegetation Survey-DMS Level 2 Protocol (Lee et al., 2008).

- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E. 2003. Stream Restoration A Natural Channel Design Handbook.
- Harrelson, C.C., Rawlins, C.L., Potyondy, J.P. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.
- Lee, M.T., Peet, R.K., S.D., Wentworth, T.R. 2008. CVS-DMS Protocol for Recording Vegetation Version 4.2. Retrieved from <u>http://cvs.bio.unc.edu/protocol/cvs-eep-protocol-v4.2-lev1-5.pdf</u>.
- Rosgen, D. L. 1994. A classification of natural rivers. *Catena* 22:169-199.
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- Rosgen, D.L. 1997. A Geomorphological Approach to Restoration of Incised Rivers. Proceedings of the Conference on Management of Landscapes Disturbed by Channel Incision. Center For Computational Hydroscience and Bioengineering, Oxford Campus, University of Mississippi, Pages 12-22.
- United States Army Corps of Engineers (USACE). 2003. Stream Mitigation Guidelines. USACE, NCDEQ-DWR, USEPA, NCWRC.
- United States Department of Agriculture (USDA). 2002. Natural Resources Conservation Service, Climate Information for Johnston County, NC (1971-2000). WETS Station: Clayton, NC1820.
- United States Geological Survey (USGS). 1998. North Carolina Geology. http://www.geology.enr.state.nc.us/usgs/carolina.htm
- Wildlands Engineering, Inc. 2013. Devil's Racetrack Stream and Wetland Mitigation Plan. DMS, Raleigh, NC.
- Wildlands Engineering, Inc. 2014. Devil's Racetrack Stream and Wetland Mitigation Site Baseline Monitoring Document and As-Built Baseline Report. DMS, Raleigh, NC.
- Winter, Thomas C., Harvey, Judson W., Franke, O. Lehn, Alley, William M. 1998. Ground Water and Surface Water: A Single Resource.

APPENDIX 1. General Tables and Figures

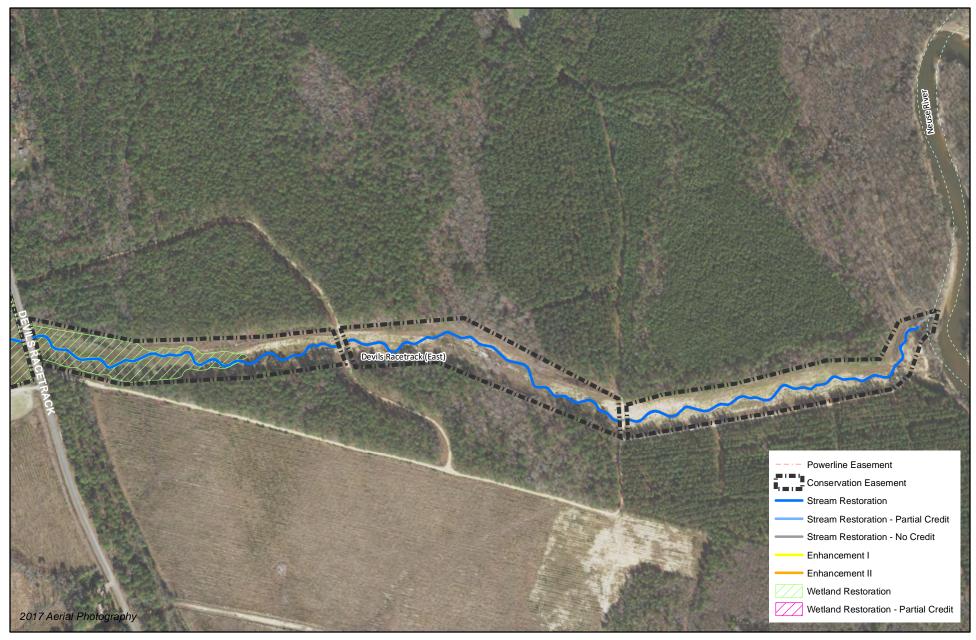


0

0.5

1 Miles

VILDLANDS ENGINEERING Figure 1. Project Vicinity Map Devil's Racetrack Mitigation Site DMS Project No. 95021 Monitoring Year 6 - 2019



0	250	500 Feet	

Figure 2a. Project Component/Asset Map Devil's Racetrack Mitigation Site DMS Project No. 95021 Monitoring Year 6 - 2019

0	250	500 Feet	4
			Ņ

Figure 2b. Project Component/Asset Map Devil's Racetrack Mitigation Site DMS Project No. 95021 Monitoring Year 6 - 2019

Table 1. Project Components and Mitigation Credits Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

				Mit	igation Cred	its				
	St	ream	Riparian V	Vetland	Non-Riparia	an Wetland	Buffer	Nitrogen Nutrient Offset	Phosphorous	Nutrient Offset
Type	R 18,215	RE 0	R 55.53	RE 0	R N/A	RE N/A	N/A	N/A	N/A	
Totals Totals	0	0	2.97	0	N/A	N/A N/A	N/A N/A	N/A N/A		I/A
·				Proje	ect Compone	nts				
Reach II	D	As-Built Stationing/ Location	Existing Footage/ Acreage	Approach	Restoration o Equiv		Restoratior Acre	•••	Mitigation Ratio	Credits (SMU/ WMU)
					Streams					
Devil's Racetrack ((West) (DOT ROW		0+00-0+20	20 LF	P1	Restor (No C		20)	N/A	N/A
Devil's Racetrack ((West)	Creek	0+20-16+26 & 17+50-52+05	4,755 LF	P1	Resto	ation	5,0	51	1:1	5,061
Devil's Racetrack ((West) (Power Line Easement)		16+26-17+50	196 LF	P1	Restor (Partial		12	4	4:1 ¹	31
Devil's Racetrack ((West) (DOT ROW		52+05-52+11	5 LF	P1	Restor (No C		6		N/A	N/A
Devil's Racetrack (ROW)	(East) (DOT	52+59-52+65	5 LF	P1	Restor (No C		6		N/A	N/A
Devil's Racetrack ((East)	52+65-70+73 71+03-88+00	4,778 LF	P1/2	Resto	ation	3,5	09	1:1	3,509
Devil's Racetrack ((East)	88+31-106+85	4,778 LF	P1/2	Restoration		1,854		1:1	1,854
Devil's Racetrack (East) (Easement Break)		70+73-71+03	30 LF	P1/2	Restor (No C		30		N/A	N/A
Devil's Racetrack ((Easement Break)		88+00 to 88+31	31 LF	P1/2	Restoration (No Credit)		31		N/A	N/A
Devil's Racetrack ((East)	106+85-107+97	0 LF	P1/2		Restoration (No Credit)		112		N/A
Southwest Branch	n	500+00-501+31 600+00-600+23	154 LF	EII	Enhand	ement	154		2.5:1	61.6
Southwest Branch	า	501+31-502+06	75 LF	EI	Enhancement		75		1.5:1	50
Southwest Branch	ı	502+06-504+85 505+99-511+32	740 LF	P1/2	Restor	ation	812		1:1	812
Southwest Branch (Power Line Easen		504+85-505+99	111 LF	P1/2	Restor (Partial		114		4:1 ¹	28.5
Middle Branch		200+00-204+10	410 LF		Headwater Wet		41		1:1	410
Middle Branch		204+10-219+06	1,326 LF	P1/2	Restor	ation	1,4	1,496 1:1		1,496
Southeast Branch		300+00-305+03 305+35-328+92	2,946 LF	P1	Restor		2,8	50	1:1	2,860
Southeast Branch Break)	(Easement	305+03-305+35	30 LF	P1	Restor (Partial	Credit)	32		N/A	N/A
North Branch		403+76-424+18		P1	Restor	ation	2,04	42	1:1	2,042
Riparian Wetlands	s (West)	N/A	0.0 ac	N/A	Wetlands Restor	ation	51.	70	1:1	51.70
Riparian Wetlands					Restor		1.5			
(Power Line Easen	,	N/A	0.0 ac	N/A	(Partial				4:1	0.38
Riparian Wetlands		N/A	0.0 ac	N/A	Resto		3.4 2.9		1:1	3.45
Riparian Wetland Riparian Wetland		N/A	0.0 ac	N/A	Restor		2.5	5	1:1	2.95
(Power Line Easer		N/A	0.0 ac	N/A	(Partial		0.0	17	4:1	0.02
				Compo	onent Summ	ation				
Restoration	Level	Strea (LF)			n Wetland Non-Riparian acres) (acre		Butteri		square feet) Upla (acre	
		46.5	10	Riverine	Non-Riverine					
Restoration A		18,51	19	56.68 3.02	-	-			-	-
Enhanceme		75		3.02	-	-			-	-
Enhanceme		154	Ļ							
Creation				-	-	-				
Preservati	ion	-		-	-	-				-

Table 1A. Project Mitigation Credit History Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 6 - 2019

				Mitigat	ion Credits					
Reach ID	Approach	Mit Plan Credits (SMU/WMU)	MY0 Credits (SMU/WMU)	MY1 Credits (SMU/WMU)	MY2 Credits (SMU/WMU)	MY3 Credits (SMU/WMU)	MY4 Credits (SMU/WMU)	MY5 Credits (SMU/WMU)	MY6 Credits (SMU/WMU)	Notes
				St	reams					
Devil's Racetrack Creek (West)	P1	5,061	5,061	5,122	5,122	5,122	5,061	5,061	5,061	2, 4
Devil's Racetrack Creek (West) (Power Line Easement)	P1	31	31	32	32	32	31	31	31	2, 4
Devil's Racetrack Creek (East)	P1/2	5,363	5,461	5,364	5,364	5,364	5,363	3509/ 1,854	5,363	1, 2, 4, 6, 11
Southwest Branch	EII	62	61.60	62	62	62	61.6	61.6	61.6	2, 5
Southwest Branch	EI	50	50.67	51	51	51	50	50	50	2, 4
Southwest Branch	P1/2	812	811	829	829	829	812	812	812	1, 2, 4
Southwest Branch (Power Line Easement)	P1/2	29	28.50	29	29	29	28.5	28.5	28.5	5
Middle Branch	Headwater Wetland	410	400	410	410	410	410	410	410	1, 2
Middle Branch	P1/2	1,496	1,506	1,505	1,505	1,505	1,496	1,496	1,496	1, 2, 4
Southeast Branch	P1	2,860	2,848	2,919	2,916	2,916	2,860	2,860	2,860	1, 2, 3, 4
North Branch	P1	2,042	2,418	2,050	2,050	2,050	2,042	2,042	2,042	1, 2, 4
Total		18,216	18,677	18,373	18,370	18,370	18,215	18,215	18,215	
				W	etlands					
Riparian Wetlands (West)	N/A	51.4	57.9	57.9	57.9	57.9	54.65	51.70/ <mark>2.95</mark>	51.70/2.95	5, 7, 8, 9, 10
Riparian Wetlands (West) (Power Line Easement)	N/A	0.4	0.4	0.4	0.4	0.4	0.40	0.38/ <mark>0.02</mark>	0.38/ <mark>0.02</mark>	5
Riparian Wetlands (East)	N/A	3.4	3.8	3.8	3.8	3.8	3.45	3.45	3.45	5, 8, 9, 10
Total		55.2	62.1	62.1	62.1	62.1	58.50	58.50	58.50	

Red denotes credits at risk.

1. As-Built credit calculations were not calculated correctly.

2. During MY1 credits were updated based on as-built thalweg alignments.

3. During MY2 a section of Southeast Branch was removed from credit because it was an easement crossing and not part of the powerline easement.

4. During MY4 credits were updated based on stream centerlines and Mitigation Plan credits after discussions with the IRT.

5. During MY4 DMS requested mitigation credits be calculated to 3 decimal places.

6. Durining MY5 the IRT categorized the lower section of Devil's Racetrack Creek (East) as credits at risk due to the lack of vegetation.

7. Wetland credits were miscalculated in the Mitigation Plan on the west side of the project. The IRT was sent a formal letter describing this and approved it.

8. As-Built wetland credits were based on anticipated wetland boundaries which included stream channels. The stream channel areas were removed during MY4. During as-built two small wetland areas not included in Mitigation Plan were added, but removed during MY4.

9. During MY4 wetland credits were reverted back Mitigation Plan credits after discussions with the IRT, and the area around groundwater well 10 was removed.

10. Durining MY5 the IRT categorized a few areas as credits at risk based on groundwater well performance and soil conditions.

11. Durining MY6 site walk the IRT removed the lower section of Devil's Racetrack Creek (East) from credits at risk due to sufficient vegetation growth.

 Table 2. Project Activity and Reporting History

 Devil's Racetrack Mitigation Site (DMS Project No. 95021)
 Monitoring Year 6 - 2019

Activity or Report		Date Collection Complete	Completion or Scheduled Delivery
		September 2011-	Delivery
Mitigation Plan		March 2011	January 2013
Final Design - Construction Plans		September 2011-	August 2013
		March 2012	7105000 2010
Construction		December 2013-	February 2014
Construction		February 2014	February 2014
Temporary S&E mix applied to entire project	area ¹	February 2014	February 2014
Permanent seed mix applied to reach/segme		February 2014	February 2014
Bare root and live stake plantings for reach/s	February 2014	February 2014	
· · · ·	Stream Survey	February 2014	,
Baseline Monitoring Document (Year 0)	Vegetation Survey	February 2014	May 2014
	Stream Survey	July 2014	
Year 1 Monitoring	Vegetation Survey	September 2014	December 2014
Minor Stream Repairs	regetation burrey	September 2011	May 2014
-	Stream Survey	April 2015	· ·
Year 2 Monitoring	Vegetation Survey	June 2015	December 2015
Minor Stream Repairs & Soil Amendments			April 2015
	Stream Survey	April 2016	
Year 3 Monitoring	Vegetation Survey	June 2016	December 2016
Soil Amendments	· · · ·	•	June 2016
Beaver Dam Removal			September 2016
Voor 4 Monitoring	Stream Survey	May 2017	December 2017
Year 4 Monitoring	Vegetation Survey	August 2017	December 2017
Pine Tree Removal			February 2017
Hugel Beds Installed			May 2017
Soil Amendments			November 2017
Year 5 Monitoring	Stream Survey	April 2018	December 2018
	Vegetation Survey	August 2018	
Soil Amendments			September 2018
Invasive Treatment			October - November 2018
Beaver Removal			December 2018
Pine Tree Removal			January 2019
Year 6 Monitoring	Stream Survey	April 2019	December 2019
	Vegetation Survey	August 2019	
Soil Amendments			August & October 2019
Live Stake Planting			March 2019
Invasive Treatment		0000	September 2019
Year 7 Monitoring	Stream Survey	2020	December 2020
0	Vegetation Survey	2020	

¹Seed and mulch is added as each section of construction is completed.

Table 3. Project Contact Table

Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

Designer	Wildlands Engineering, Inc.
Jeff Keaton, PE	312 West Millbrook Road, Suite 225
	Raleigh, NC 27609
	919.851.9986
Construction Contractor (East Side)	Land Mechanic Designs, Inc.
	126 Circle G Lane
	Willow Spring, NC 27592
Construction Contractor (West Side)	Fluvial Solutions
	P.O. Box 28749
	Raleigh, NC 27611
Planting Contractor	Bruton Natural Systems, Inc
	P.O. Box 1197
	Fremont, NC 27830
Seeding Contractor	Bruton Natural Systems, Inc
	P.O. Box 1197
	Fremont, NC 27830
Seed Mix Sources	Green Resource, LLC
Nursery Stock Suppliers	Dykes and Son Nursery and NC Forest Service
	(Claridge Nursery)
Bare Roots	(clanuge wursery)
Live Stakes	Bruton Natural Systems, Inc
Monitoring Performers	Wildlands Engineering, Inc.
Stream, Vegetation, and Wetland Monitoring, POC	Jason Lorch
	919.851.9986, ext. 107

Table 4. Project Information and AttributesDevil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

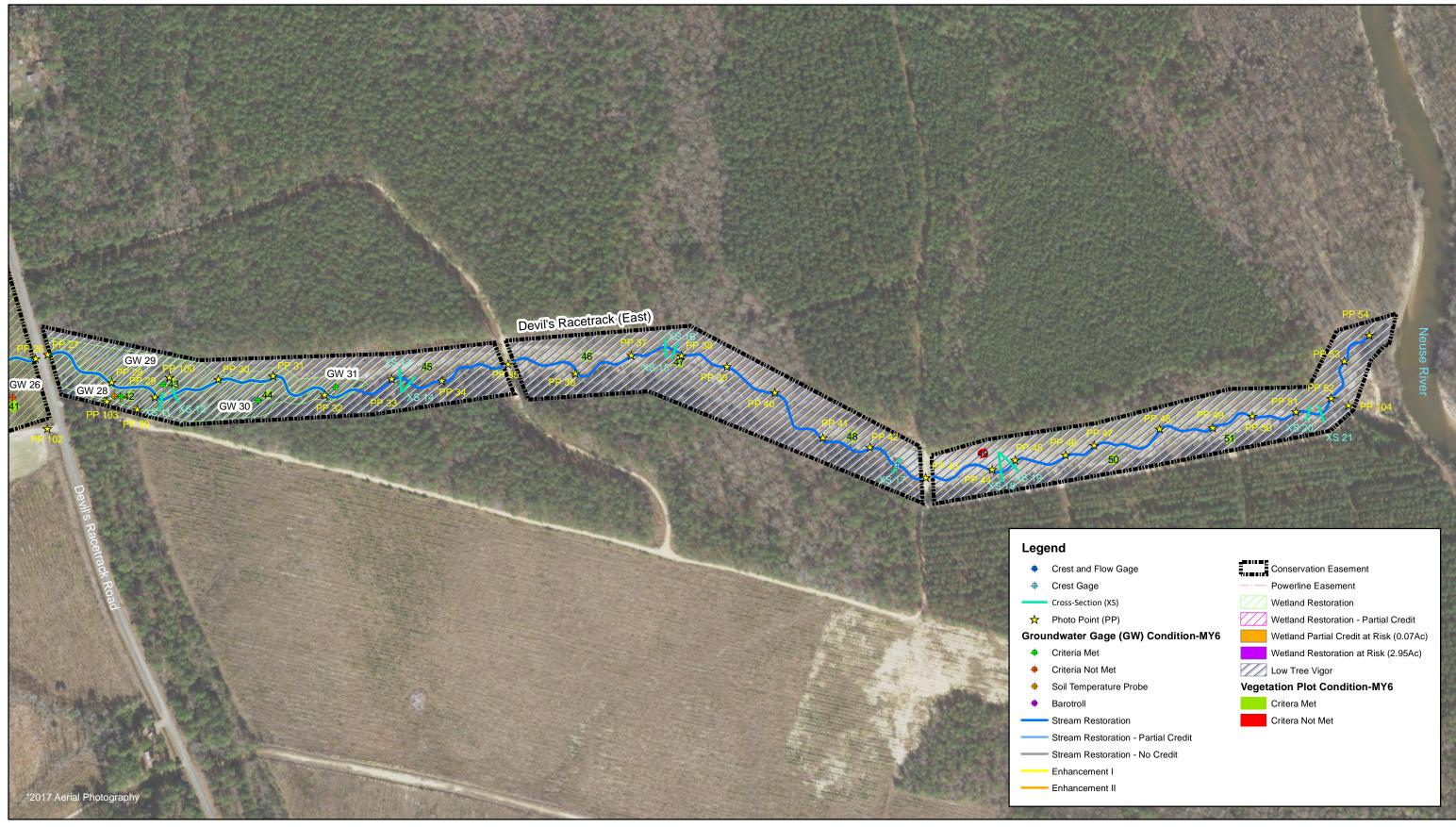
	Project Info	rmation				
Durai - sh Narra -						
Project Name		k Mitigation Site				
County	Johnston Count	У				
Project Area (acres)	96.065 ac	, 78° 23' 18.08" V				
Project Coordinates (latitude and longitude)		,				
	atershed Sur	-	nation			
Physiographic Province	Upper Coastal P	lain				
River Basin	Neuse					
USGS Hydrologic Unit 8-digit	03020201					
USGS Hydrologic Unit 14-digit	0302020114001	10				
DWR Sub-basin	03-04-02					
Project Drainage Area (acres)	831 ac					
Project Drainage Area Percentage of Impervious Area	<1%					
CGIA Land Use Classification	62% forest/wet	land, 34% farm la	nd, 4% developed	ł		
Rea	ach Summary	Information				
Parameters	Southwest Branch	Middle Branch	Southeast Branch	North Branch	Devil's Racetrack Creek (west)	Devil's Racetrack Creek (east)
Length of reach (linear feet) - Post-Restoration	1,155	1,906	2,892	2,042	5,211	5,542
Drainage area (acres)	20.6	10.8	69.9	49.9	493.5	831.4
NCDWR stream identification score	34.5 - 37	30	29 - 30.75	32	38	37.5
NCDWR Water Quality Classification				ISW		
Morphological Desription (stream type)	Р	Р	P/I	Р	Р	Р
Evolutionary trend (Simon's Model) - Pre- Restoration						
Underlying mapped soils			y loam, Cecil loam, k loamy sand, and F		,	, Lynchburg
Drainage class						
Soil Hydric status						
Slope						
FEMA classification				one		
Native vegetation community		Со	astal Plain botton		rest	
Percent composition exotic invasive vegetation -Post-Restoration			0	%		
Re	egulatory Con	siderations				
Regulation	Applicable?	Resolved?			ocumentation	
Waters of the United States - Section 404	Х	Х			and DWQ 401 W	ater Quality
Waters of the United States - Section 401	Х	Х	Certification No.	3885.		
Division of Land Quality (Dam Safety)	N/A	N/A	N/A			
Endangered Species Act	х	х		•	Wildlands deterr d endangered spe	
Historic Preservation Act	х	х	No historic reso SHPO dated 7/2		to be impacted (letter from
Coastal Zone Management Act (CZMA)/Coastal Area Management Act (CAMA)	N/A	N/A	N/A			
FEMA Floodplain Compliance	N/A	N/A	flooplaing; howe Creek is located	ever the downstr	an associated reg eam end of Devil' wasy and flood fri V panel 1680).	s Racetrack
Essential Fisheries Habitat	N/A	N/A	N/A			
	, ,	, ,				

APPENDIX 2. Visual Assessment Data

500

1,000 Feet

igure 3.0 Integrated Current Condition Plan View (Key) Devil's Racetrack Mitigation Site DMS Project No. 95021 Monitoring Year 6 - 2019 Johnston County, NC



500 Feet

Figure 3.1 Integrated Current Condition Plan View (Sheet 1 of 2) Devil's Racetrack Mitigation Site DMS Project No. 95021 Monitoring Year 6 - 2019 Johnston County, NC

250 500 Feet

Ω

Figure 3.2 Integrated Current Condition Plan View (Sheet 2 of 2) Devil's Racetrack Mitigation Site DMS Project No. 95021 Monitoring Year 6 - 2019

Table 5a. Visual Stream Morphology Stability Assessment Table

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 6 - 2019

Devil's Racetrack (West) (5,211 LF)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	74	74			100%			
	3. Meander Pool	Depth Sufficient	74	74			100%			
	Condition	Length Appropriate	74	74			100%			
	4 Theleuse Desition	Thalweg centering at upstream of meander bend (Run)	74	74			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	74	74			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, caving, or collapse			0	0	100%	n/a	n/a	n/a
		•		Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	6	6		•	100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	6	6			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	6	6			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	6	6			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow	6	6			100%			

Table 5b. Visual Stream Morphology Stability Assessment Table

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 6 - 2019

Devil's Racetrack (East) (5,542 LF)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	85	85			100%			
	3. Meander Pool	Depth Sufficient	85	85			100%			
	Condition	Length Appropriate	85	85			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	85	85			100%			
	4. maiweg rosition	Thalweg centering at downstream of meander bend (Glide)	85	85			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion	_		0	0	100%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, caving, or collapse			0	0	100%	n/a	n/a	n/a
	•			Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	17	17			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	17	17			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	17	17			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	17	17			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow	17	17			100%			

Table 5c. Visual Stream Morphology Stability Assessment Table

Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

Southeast Branch (2,892 LF)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			1	100	97%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	121	121			100%			
	3. Meander Pool	Depth Sufficient	120	120			100%			
	Condition	Length Appropriate	120	120			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	120	120			100%			
	4. Thatweg Position	Thalweg centering at downstream of meander bend (Glide)	120	120			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, caving, or collapse			0	0	100%	n/a	n/a	n/a
		ł		Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	67	67			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	67	67			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	65	67			97%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	67	67			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow	67	67			100%			

Table 5d. Visual Stream Morphology Stability Assessment TableDevil's Racetrack Mitigation Site (DMS Project No. 95021)Monitoring Year 6 - 2019

Middle Branch (1,906 LF)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	79	79			100%			
	3. Meander Pool	Depth Sufficient	78	78			100%			
	Condition	Length Appropriate	78	78			100%			
	4 Thebuer Desition	Thalweg centering at upstream of meander bend (Run)	78	78			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	78	78			100%			
	-	•	•	•			•	•		
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, caving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	52	52			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	52	52			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	52	52			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	52	52			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow	52	52			100%			

Table 5e. Visual Stream Morphology Stability Assessment Table

Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

Southwest Branch (1,155 LF)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	48	48			100%			
	3. Meander Pool	Depth Sufficient	47	47			100%			
	Condition	Length Appropriate	47	47			100%			
		Thalweg centering at upstream of meander bend (Run)	47	47			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	47	47			100%			
				•						
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, caving, or collapse			0	0	100%	n/a	n/a	n/a
		1		Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	28	28			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	28	28			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	28	28			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	28	28			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow	28	28			100%			

Table 5f. Visual Stream Morphology Stability Assessment Table

Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

North Branch (2,042 LF)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	35	35			100%			
	3. Meander Pool	Depth Sufficient	34	34			100%			
	Condition	Length Appropriate	34	34			100%			
		Thalweg centering at upstream of meander bend (Run)	34	34			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	34	34			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, caving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	10	10			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	10	10			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	10	10			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	10	10			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow	10	10			100%			

Table 6. Vegetation Condition Assessment TableDevil's Racetrack Mitigation Site (DMS Project No. 95021)Monitoring Year 6 - 2019

Planted Acreage	96				
Vegetation Category	Definitions		Number of Polygons	Combined Acreage	% of Planted Acreage
Bare Areas	Very limited cover of both woody and herbaceous material.		0	0.0	0.0%
Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.		0	0.0	0.0%
	Total	0	0.0	0.0%	
Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 Ac	3	22.7	23.6%
Cumulative Tota					23.6%

Easement Acreage	96				
Vegetation Category	Definitions	Mapping Threshold (SF)	Number of Polygons	Combined Acreage	% of Planted Acreage
Invasive Areas of Concern	Areas of points (if too small to render as polygons at map scale).	1,000	0	0	0.0%
Easement Encroachment Areas	Areas of points (if too small to render as polygons at map scale).	none	0	0	0%

STREAM PHOTOGRAPHS

PHOTO POINT 3 DRT West - upstream (06/11/2019)

PHOTO POINT 3 DRT West - downstream (06/11/2019)

PHOTO POINT 6 DRT West - upstream (06/11/2019)

PHOTO POINT 6 DRT West - downstream (06/11/2019)

PHOTO POINT 7 DRT West - upstream (06/11/2019)

PHOTO POINT 7 DRT West - downstream (06/11/2019)

PHOTO POINT 8 DRT West - upstream (06/11/2019)

PHOTO POINT 8 DRT West - downstream (06/11/2019)

PHOTO POINT 9 DRT West - upstream (06/11/2019)

PHOTO POINT 9 DRT West - downstream (06/11/2019)

PHOTO POINT 12 DRT West - upstream (06/11/2019)

PHOTO POINT 12 DRT West - downstream (06/11/2019)

PHOTO POINT 13 DRT West - upstream (06/11/2019)

PHOTO POINT 13 DRT West - downstream (06/11/2019)

PHOTO POINT 14 DRT West - upstream (06/11/2019)

PHOTO POINT 14 DRT West - downstream (06/11/2019)

PHOTO POINT 15 DRT West - upstream (04/30/2019)

PHOTO POINT 15 DRT West - downstream (04/30/2019)

PHOTO POINT 18 DRT West - upstream (06/10/2019)

PHOTO POINT 18 DRT West - downstream (06/10/2019)

PHOTO POINT 21 DRT West - upstream (06/10/2019)

PHOTO POINT 21 DRT West - downstream (06/10/2019)

PHOTO POINT 24 DRT West - upstream (06/10/2019)

PHOTO POINT 24 DRT West - downstream (06/10/2019)

PHOTO POINT 28 DRT East - upstream (06/11/2019)

PHOTO POINT 28 DRT East - downstream (06/11/2019)

PHOTO POINT 31 DRT East - downstream (06/11/2019)

PHOTO POINT 31 DRT East - upstream (06/11/2019)

PHOTO POINT 32 DRT East - upstream (06/11/2019)

PHOTO POINT 33 DRT East - upstream (06/11/2019)

PHOTO POINT 32 DRT East - downstream (06/11/2019)

PHOTO POINT 33 DRT East - downstream (06/11/2019)

PHOTO POINT 34 DRT East - upstream (06/11/2019)

PHOTO POINT 34 DRT East - downstream (06/11/2019)

PHOTO POINT 36 DRT East - upstream (06/11/2019)

PHOTO POINT 36 DRT East - downstream (06/11/2019)

PHOTO POINT 37 DRT East - upstream (06/11/2019)

PHOTO POINT 37 DRT East - downstream (06/11/2019)

PHOTO POINT 38 DRT East - downstream (06/11/2019)

PHOTO POINT 39 DRT East - downstream (06/11/2019)

PHOTO POINT 40 DRT East - upstream (06/11/2019)

PHOTO POINT 40 DRT East - downstream (06/11/2019)

PHOTO POINT 43 DRT East - upstream (06/11/2019)

PHOTO POINT 43 DRT East - downstream (06/11/2019)

PHOTO POINT 46 DRT East - upstream (06/11/2019)

PHOTO POINT 46 DRT East - downstream (06/11/2019)

PHOTO POINT 49 DRT East - upstream (06/11/2019)

PHOTO POINT 49 DRT East - downstream (06/11/2019)

PHOTO POINT 52 DRT East - upstream (06/11/2019)

PHOTO POINT 52 DRT East - downstream (06/11/2019)

PHOTO POINT 55 Southwest Branch - upstream (06/11/2019)

PHOTO POINT 55 Southwest Branch - downstream (06/11/2019)



PHOTO POINT 58 Southwest Branch - upstream (04/30/2019)

PHOTO POINT 58 Southwest Branch - downstream (04/30/2019)

PHOTO POINT 61 Middle Branch - upstream (04/30/2019)

PHOTO POINT 61 Middle Branch - downstream (04/30/2019)



PHOTO POINT 64 Middle Branch - upstream (06/11/2019)

PHOTO POINT 64 Middle Branch - downstream (06/11/2019)

PHOTO POINT 67 Middle Branch - upstream (04/30/2019)

PHOTO POINT 67 Middle Branch - downstream (04/30/2019)

R

R

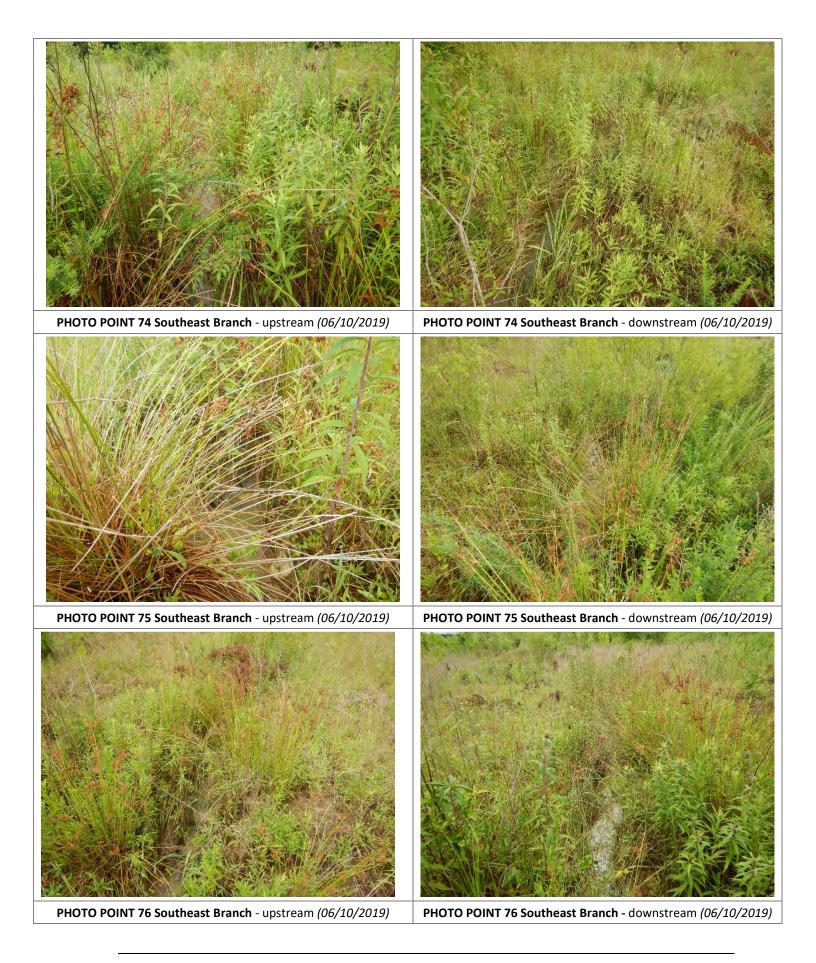


PHOTO POINT 79 Southeast Branch - upstream (06/10/2019)

PHOTO POINT 79 Southeast Branch - downstream (06/10/2019)

R

PHOTO POINT 85 North Branch - upstream (06/11/2019)

PHOTO POINT 85 North Branch - downstream (06/11/2019)

PHOTO POINT 88 North Branch - upstream (06/11/2019)

PHOTO POINT 88 North Branch - downstream (06/11/2019)

S

VEGETATION PHOTOGRAPHS

R

VEG PLOT 11 (08/07/2019)

VEG PLOT 12 (08/07/2019)

VEG PLOT 17 (08/01/2019)

VEG PLOT 18 (08/01/2019)

VEG PLOT 19 (08/01/2019)

VEG PLOT 20 (08/01/2019)

VEG PLOT 21 (08/07/2019)

VEG PLOT 22 (08/07/2019)

VEG PLOT 23 (08/29/2018)

VEG PLOT 24 (08/29/2018)

VEG PLOT 29 (08/01/2019)

VEG PLOT 30 (08/01/2019)

VEG PLOT 34 (08/01/2019)

VEG PLOT 35 (08/01/2019)

VEG PLOT 36 (08/01/2019)

VEG PLOT 41 (08/01/2019)

VEG PLOT 42 (08/01/2019)

VEG PLOT 45 (08/01/2019)

VEG PLOT 46 (08/01/2019)

VEG PLOT 47 (08/01/2019)

VEG PLOT 48 (08/01/2019)

VEG PLOT 49 (08/01/2019)

VEG PLOT 50 (08/01/2019)

VEG PLOT 51 (08/01/2019)

APPENDIX 3. Vegetation Plot Data

Table 7. Vegetation Plot Criteria Attainment

Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

	Success Criteria	
Plot	Met (Y/N)	Tract Mean
1	Y	
2	Y	
3	Y	
4	Y	
5	Y	
6	Y	
7	Y	
8	Y	
9	Y	
10	Y	
11	Y	
12	Y	
13	Y	
14	Y	
15	Y	
16	Y	
17	Y	
18	Y	
19	Y	
20	Y	
21	Y	
22	Y	
23	Y	
24	Y	
25	Y	000/
26	Y	98%
27	Y	
28	Y	
29	Y	
30	Y	
31	Y	
32	Y Y	
33		
34	Y	
35 36	Y Y	
37 38	Y Y	
39 40	Y Y	
40	Y	
42	Y	
43	Y Y	
44		
45	Y	
46 47	Y Y	
48	Y	
49	N	
50	Y	
51	Y	

Table 8. CVS Vegetation Table - Metadata

Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

Devils Racetrack MY6 cvs-eep-entrytool-v2.3.1.mdb
F:\Projects\005-02129 Devil's Racetrack\Monitoring\Monitoring Year 6\Vegetation
CARLYNN-PC
62914560
DOCUMENT
Description of database file, the report worksheets, and a summary of project(s) and project data.
Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Frequency distribution of vigor classes for stems for all plots.
Frequency distribution of vigor classes listed by species.
List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage values tallied by type for each species.
Damage values tallied by type for each plot.
A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
95021
Devils Racetrack Mitigation Site
Stream and Wetland Mitigation
Neuse
51

Devil's Racetrack Mitigation Site (DMS Project Code 95021) Monitoring Year 6 - 2019

											Curi	rent Plo	t Data	(MY6 2	019)								
				VP 1			VP 2			VP 3			VP 4			VP 5			VP 6			VP 7	
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т
Acer rubrum	red maple	Tree									1												
Alnus serrulata	hazel alder	Shrub																					
Baccharis halimifolia	eastern baccharis	Shrub			2									2									
Betula nigra	river birch	Tree	1	1	1	1	1	1	3	3	3	2	2	2	2	2	2	5	5	5	6	6	6
Cephalanthus occidentalis	common buttonbush	Shrub																					
Fraxinus pennsylvanica	green ash	Tree	3	3	3	4	4	4	3	3	3	1	1	1	2	2	2	2	2	2	1	1	1
Ligustrum sinense	Chinese privet	Exotic																					
Liquidambar styraciflua	sweetgum	Tree			4			47			2			19			3			7			1
Liriodendron tulipifera	tuliptree	Tree																			3	3	3
Mimosa	sensitive plant	Exotic			1																		
Morella cerifera	wax myrtle	Shrub																					
Nyssa biflora	swamp tupelo	Tree				1	1	1												1			
Nyssa sylvatica	blackgum	Tree	3	3	3	1	1	1	2	2	2												
Pinus	pine	Tree									4			5			9						8
Platanus occidentalis	American sycamore	Tree	2	2	2	2	2	4	2	2	2	3	3	3				2	2	2	2	2	2
Prunus serotina	black cherry	Tree																					
Pyrus calleryana	Callery pear	Exotic																					
Quercus laurifolia	laurel oak	Tree																					
Quercus michauxii	swamp chestnut oak	Tree	3	3	3							1	1	1	2	2	2	1	1	1			
Quercus pagoda	cherrybark oak	Tree										1	1	1	1	1	1						
Quercus phellos	willow oak	Tree	3	3	3	4	4	4	1	1	1			1									
Quercus rubra	northern red oak	Tree																					
Rhus copallinum	flameleaf sumac	Shrub																					
Salix nigra	black willow	Tree																					
Salix sericea	silky willow	Shrub																					
Sambucus	elderberry	Shrub																					
Taxodium distichum	bald cypress	Tree	2	2	2	3	3	3	3	3	3	3	3	3	4	4	4	5	5	5			
Ulmus	elm	Tree																					
Ulmus alata	winged elm	Tree																					
Ulmus americana	American elm	Tree																					
		Stem count	17	17	21	16	16	65	14	14	17	11	11	31	11	11	14	15	15	23	12	12	13
		size (ares)		1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	7	7	10	7	7	8	6	6	9	6	6	10	5	5	7	5	5	7	4	4	6
		Stems per ACRE	688	688	850	647	647	2,630	567	567	688	445	445	1,255	445	445	567	607	607	931	486	486	526

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes,

Devil's Racetrack Mitigation Site (DMS Project Code 95021) Monitoring Year 6 - 2019

											Curi	rent Plo	ot Data	(MY6 2	019)								
				VP 8			VP 9			VP 10			VP 11			VP 12			VP 13			VP 14	
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer rubrum	red maple	Tree			1			4						1			2			3			1
Alnus serrulata	hazel alder	Shrub																					
Baccharis halimifolia	eastern baccharis	Shrub			1																		
Betula nigra	river birch	Tree	2	2	2	2	2	2	1	1	1	2	2	2	1	1	1	2	2	2			
Cephalanthus occidentalis	common buttonbush	Shrub																					
Fraxinus pennsylvanica	green ash	Tree	4	4	4	1	1	1	3	3	3	5	5	5	4	4	4				2	2	2
Ligustrum sinense	Chinese privet	Exotic															2			1			
Liquidambar styraciflua	sweetgum	Tree															7			2			15
Liriodendron tulipifera	tuliptree	Tree																					
Mimosa	sensitive plant	Exotic																					
Morella cerifera	wax myrtle	Shrub																					
Nyssa biflora	swamp tupelo	Tree				1	1	1										1	1	1			
Nyssa sylvatica	blackgum	Tree												6									
Pinus	pine	Tree			34			4						17			2						
Platanus occidentalis	American sycamore	Tree	1	1	1	5	5	6	5	5	6	2	2	2	5	5	5	3	3	3	3	3	3
Prunus serotina	black cherry	Tree																					
Pyrus calleryana	Callery pear	Exotic			2																		
Quercus laurifolia	laurel oak	Tree																					
Quercus michauxii	swamp chestnut oak	Tree																1	1	1			
Quercus pagoda	cherrybark oak	Tree	1	1	1																		
Quercus phellos	willow oak	Tree				2	2	2							4	4	4	4	4	4			5
Quercus rubra	northern red oak	Tree																					
Rhus copallinum	flameleaf sumac	Shrub																					
Salix nigra	black willow	Tree									1												
Salix sericea	silky willow	Shrub																					
Sambucus	elderberry	Shrub																					
Taxodium distichum	bald cypress	Tree	4	4	4	5	5	5	3	3	3	2	2	2	2	2	2	5	5	5	10	10	10
Ulmus	elm	Tree																					
Ulmus alata	winged elm	Tree																					
Ulmus americana	American elm	Tree																					
		Stem count	12	12	13	16	16	21	12	12	14	11	11	18	16	16	25	16	16	21	15	15	36
		size (ares)		1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	5	5	9	6	6	8	4	4	5	4	4	7	5	5	9	6	6	9	3	3	6
	9	Stems per ACRE	486	486	526	647	647	850	486	486	567	445	445	728	647	647	1,012	647	647	850	607	607	1,457

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes,

Devil's Racetrack Mitigation Site (DMS Project Code 95021) Monitoring Year 6 - 2019

											Curi	rent Plo	t Data	(MY6 2	019)								
				VP 15			VP 16			VP 17			VP 18			VP 19			VP 20			VP 21	
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer rubrum	red maple	Tree																					
Alnus serrulata	hazel alder	Shrub																					
Baccharis halimifolia	eastern baccharis	Shrub									3			1			1			8			
Betula nigra	river birch	Tree				6	6	6	2	2	2										3	3	3
Cephalanthus occidentalis	common buttonbush	Shrub																					
Fraxinus pennsylvanica	green ash	Tree	1	1	1	3	3	3	2	2	2	1	1	1	2	2	2				5	5	5
Ligustrum sinense	Chinese privet	Exotic																					
Liquidambar styraciflua	sweetgum	Tree			3			5			5			6			3			6			
Liriodendron tulipifera	tuliptree	Tree																					
Mimosa	sensitive plant	Exotic																					
Morella cerifera	wax myrtle	Shrub																					
Nyssa biflora	swamp tupelo	Tree				3	3	3				2	2	2	2	2	2	2	2	2			
Nyssa sylvatica	blackgum	Tree																					
Pinus	pine	Tree									3			1						2			1
Platanus occidentalis	American sycamore	Tree	4	4	4	1	1	1	1	1	1							4	4	4			
Prunus serotina	black cherry	Tree																					
Pyrus calleryana	Callery pear	Exotic																					
Quercus laurifolia	laurel oak	Tree																					
Quercus michauxii	swamp chestnut oak	Tree	2	2	2										5	5	5	1	1	1			
Quercus pagoda	cherrybark oak	Tree	1	1	1										1	1	1						
Quercus phellos	willow oak	Tree				1	1	1				4	4	4				1	1	1			
Quercus rubra	northern red oak	Tree							1	1	1												
Rhus copallinum	flameleaf sumac	Shrub																					4
Salix nigra	black willow	Tree			10																		
Salix sericea	silky willow	Shrub																					
Sambucus	elderberry	Shrub																					1
Taxodium distichum	bald cypress	Tree	7	7	7				10	10	10	5	5	5	4	4	4	7	7	7	5	5	5
Ulmus	elm	Tree																					
Ulmus alata	winged elm	Tree																					
Ulmus americana	American elm	Tree																					
		Stem count	15	15	28	14	14	19	16	16	21	12	12	18	14	14	17	15	15	21	13	13	18
		size (ares)		1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count		5	7	5	5	6	5	5	8	4	4	7	5	5	7	5	5	8	3	3	6
		Stems per ACRE	607	607	1,133	567	567	769	647	647	850	486	486	728	567	567	688	607	607	850	526	526	728

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes,

Devil's Racetrack Mitigation Site (DMS Project Code 95021) Monitoring Year 6 - 2019

											Curr	ent Plo	t Data	(MY6 2	019)								
				VP 22			VP 23			VP 24			VP 25			VP 26			VP 27			VP 28	
Scientific Name	Common Name	Species Type	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer rubrum	red maple	Tree						1															
Alnus serrulata	hazel alder	Shrub																					
Baccharis halimifolia	eastern baccharis	Shrub												2			2			4			
Betula nigra	river birch	Tree				2	2	2				2	2	2	2	2	2				2	2	2
Cephalanthus occidentalis	common buttonbush	Shrub																					
Fraxinus pennsylvanica	green ash	Tree	3	3	3				6	6	6	3	3	3	4	4	4	1	1	1	1	1	1
Ligustrum sinense	Chinese privet	Exotic																					3
Liquidambar styraciflua	sweetgum	Tree												1			1						
Liriodendron tulipifera	tuliptree	Tree																					
Mimosa	sensitive plant	Exotic																					
Morella cerifera	wax myrtle	Shrub																					
Nyssa biflora	swamp tupelo	Tree													1	1	1				2	2	2
Nyssa sylvatica	blackgum	Tree																					
Pinus	pine	Tree			1									8			1			6			
Platanus occidentalis	American sycamore	Tree	1	1	1	7	7	7	4	4	4	4	4	4	1	1	1	1	1	1	3	3	3
Prunus serotina	black cherry	Tree																					
Pyrus calleryana	Callery pear	Exotic																					
Quercus laurifolia	laurel oak	Tree																					
Quercus michauxii	swamp chestnut oak	Tree							2	2	2							4	4	4			
Quercus pagoda	cherrybark oak	Tree	3	3	3																		
Quercus phellos	willow oak	Tree	2	2	2	2	2	3	1	1	1							1	1	1	5	5	5
Quercus rubra	northern red oak	Tree																					
Rhus copallinum	flameleaf sumac	Shrub																					
Salix nigra	black willow	Tree						1						2									3
Salix sericea	silky willow	Shrub																					
Sambucus	elderberry	Shrub																					
Taxodium distichum	bald cypress	Tree	7	7	7	3	3	3	4	4	4	6	6	6	3	3	3	8	8	8	1	1	1
Ulmus	elm	Tree																					
Ulmus alata	winged elm	Tree																					
Ulmus americana	American elm	Tree																					
		Stem count	16	16	16	14	14	17	17	17	17	15	15	18	11	11	12	15	15	15	14	14	17
		size (ares)		1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02		l	0.02	
		Species count	5	5	6	4	4	6	5	5	5	4	4	8	5	5	8	5	5	7	6	6	8
	:	Stems per ACRE	647	647	647	567	567	688	688	688	688	607	607	728	445	445	486	607	607	607	567	567	688

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes,

Devil's Racetrack Mitigation Site (DMS Project Code 95021) Monitoring Year 6 - 2019

											Cur	rent Plo	ot Data	(MY6 2	019)								
				VP 29			VP 30			VP 31			VP 32			VP 33			VP 34			VP 35	
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer rubrum	red maple	Tree															5						
Alnus serrulata	hazel alder	Shrub															1						
Baccharis halimifolia	eastern baccharis	Shrub												1						2			
Betula nigra	river birch	Tree	1	1	1	1	1	1	4	4	4				3	3	3	3	3	3	4	4	4
Cephalanthus occidentalis	common buttonbush	Shrub																					
Fraxinus pennsylvanica	green ash	Tree				1	1	1	1	1	1	7	7	8	2	2	2	2	2	2	2	2	2
Ligustrum sinense	Chinese privet	Exotic																		2			
Liquidambar styraciflua	sweetgum	Tree															8			3			
Liriodendron tulipifera	tuliptree	Tree																					
Mimosa	sensitive plant	Exotic																					
Morella cerifera	wax myrtle	Shrub																					
Nyssa biflora	swamp tupelo	Tree	2	2	2				2	2	2	1	1	1	2	2	2	4	4	4	3	3	3
Nyssa sylvatica	blackgum	Tree																					
Pinus	pine	Tree																		2			5
Platanus occidentalis	American sycamore	Tree	1	1	1				4	4	4	2	2	2	4	4	4	1	1	1	7	7	7
Prunus serotina	black cherry	Tree																					
Pyrus calleryana	Callery pear	Exotic																					
Quercus laurifolia	laurel oak	Tree												1									
Quercus michauxii	swamp chestnut oak	Tree	1	1	2																		
Quercus pagoda	cherrybark oak	Tree				7	7	7	2	2	2	2	2	2	1	1	1	4	4	4			
Quercus phellos	willow oak	Tree	1	1	1	4	4	4	1	1	1				2	2	2						
Quercus rubra	northern red oak	Tree																					
Rhus copallinum	flameleaf sumac	Shrub												5									
Salix nigra	black willow	Tree			1						3			2									
Salix sericea	silky willow	Shrub																					
Sambucus	elderberry	Shrub																					
Taxodium distichum	bald cypress	Tree	6	6	6	3	3	3	2	2	2	7	7	7	4	4	4	2	2	2	2	2	2
Ulmus	elm	Tree																					
Ulmus alata	winged elm	Tree																					
Ulmus americana	American elm	Tree																					
		Stem count	12	12	14	16	16	16	16	16	19	19	19	28	18	18	32	16	16	19	18	18	18
		size (ares)		1			1			1			1			1			1			1	
	size (A						0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	6	6	7	5	5	5	7	7	8	5	5	9	7	7	10	6	6	10	5	5	6
<u> </u>		Stems per ACRE	486	486	567	647	647	647	647	647	769	769	769	1,133	728	728	1,295	647	647	769	728	728	728

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes,

Devil's Racetrack Mitigation Site (DMS Project Code 95021) Monitoring Year 6 - 2019

												(Current	Plot D	ata (M	6 2019))									
				VP 36			VP 37			VP 38			VP 39			VP 40			VP 41			VP 42			VP 43	
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	Т
Acer rubrum	red maple	Tree												1									4			3
Alnus serrulata	hazel alder	Shrub																								
Baccharis halimifolia	eastern baccharis	Shrub																					3			
Betula nigra	river birch	Tree	4	4	4	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	2	2	2	3
Cephalanthus occidentalis	common buttonbush	Shrub																								
Fraxinus pennsylvanica	green ash	Tree	1	1	1	2	2	2	2	2	2	2	2	2	1	1	1	2	2	2				4	4	4
Ligustrum sinense	Chinese privet	Exotic						1																		
Liquidambar styraciflua	sweetgum	Tree												1			1						3			2
Liriodendron tulipifera	tuliptree	Tree																								
Mimosa	sensitive plant	Exotic																								
Morella cerifera	wax myrtle	Shrub																								
Nyssa biflora	swamp tupelo	Tree	1	1	1	2	2	2										1	1	1	6	6	6	2	2	4
Nyssa sylvatica	blackgum	Tree																								
Pinus	pine	Tree			14						5			5			5			2						
Platanus occidentalis	American sycamore	Tree	2	2	2	2	2	2				6	6	6	5	5	5	3	3	3						
Prunus serotina	black cherry	Tree																								
Pyrus calleryana	Callery pear	Exotic																								
Quercus laurifolia	laurel oak	Tree																								
Quercus michauxii	swamp chestnut oak	Tree																								
Quercus pagoda	cherrybark oak	Tree	1	1	2										1	1	2						1			
Quercus phellos	willow oak	Tree	5	5	5	1	1	1				1	1	2	4	4	4	2	2	2	3	3	3			
Quercus rubra	northern red oak	Tree																								
Rhus copallinum	flameleaf sumac	Shrub																					1			
Salix nigra	black willow	Tree						1									2									
Salix sericea	silky willow	Shrub																								
Sambucus	elderberry	Shrub																								
Taxodium distichum	bald cypress	Tree	3	3	3	3	3	3	5	5	5	4	4	4	5	5	5	6	6	6	1	1	1	4	4	4
Ulmus	elm	Tree																								
Ulmus alata	winged elm	Tree			1																					
Ulmus americana	American elm	Tree																								
		Stem count	17	17	19	12	12	13	9	9	9	15	15	18	17	17	21	15	15	15	11	11	21	12	12	20
		size (ares)		1			1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	7	7	9	6	6	8	3	3	4	5	5	8	6	6	9	6	6	7	4	4	9	4	4	6
		Stems per ACRE	688	688	769	486	486	526	364	364	364	607	607	728	688	688	850	607	607	607	445	445	850	486	486	809

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes,

Devil's Racetrack Mitigation Site (DMS Project Code 95021) Monitoring Year 6 - 2019

												(Current	Plot D	ata (M	/6 2019))									
				VP 44			VP 45			VP 46		1	VP 47		1	VP 48		1	VP 49			VP 50		1	VP 51	
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	Т
Acer rubrum	red maple	Tree																								
Alnus serrulata	hazel alder	Shrub																								
Baccharis halimifolia	eastern baccharis	Shrub												1												1
Betula nigra	river birch	Tree	1	1	1	2	2	2	4	4	4						1	2	2	2	5	5	5	3	3	4
Cephalanthus occidentalis	common buttonbush	Shrub																								
Fraxinus pennsylvanica	green ash	Tree	3	3	3	1	1	1			1	3	3	3	6	6	6				3	3	4	1	1	2
Ligustrum sinense	Chinese privet	Exotic																								
Liquidambar styraciflua	sweetgum	Tree						3						2												
Liriodendron tulipifera	tuliptree	Tree													2	2	2				2	2	2			
Mimosa	sensitive plant	Exotic																								
Morella cerifera	wax myrtle	Shrub																								
Nyssa biflora	swamp tupelo	Tree	7	7	8			2																		
Nyssa sylvatica	blackgum	Tree																								
Pinus	pine	Tree						13			14															
Platanus occidentalis	American sycamore	Tree																			2	2	2	4	4	5
Prunus serotina	black cherry	Tree																								
Pyrus calleryana	Callery pear	Exotic			1																					
Quercus laurifolia	laurel oak	Tree																								
Quercus michauxii	swamp chestnut oak	Tree																								
Quercus pagoda	cherrybark oak	Tree							2	2	2	2	2	2	4	4	5			1	2	2	4	4	4	6
Quercus phellos	willow oak	Tree	1	1	1	2	2	2	2	2	2	2	2	2	1	1	1	1	1	2	1	1	1	1	1	1
Quercus rubra	northern red oak	Tree																								
Rhus copallinum	flameleaf sumac	Shrub						3															6			2
Salix nigra	black willow	Tree																								
Salix sericea	silky willow	Shrub																								
Sambucus	elderberry	Shrub																								
Taxodium distichum	bald cypress	Tree				6	6	6	1	1	1							1	1	1						
Ulmus	elm	Tree																								
Ulmus alata	winged elm	Tree																								
Ulmus americana	American elm	Tree																								
		Stem count	12	12	13	11	11	19	9	9	10	7	7	9	13	13	15	4	4	6	15	15	24	13	13	20
		size (ares)										1			1			1			1			1		
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	4	4	5	4	4	8	4	4	6	3	3	5	4	4	5	3	3	4	6	6	7	5	5	7
	:	Stems per ACRE	486	486	526	445	445	769	364	364	405	283	283	364	526	526	607	162	162	243	607	607	971	526	526	809

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes,

Devil's Racetrack Mitigation Site (DMS Project Code 95021) Monitoring Year 6 - 2019

												Anr	nual Me	eans									
			M	IY6 (20:	19)	M	Y5 (20:	18)	M	Y4 (20	17)	M	1Y3 (201	L6)	M	Y2 (20	15)	N	IY1 (201	L4)	N	1Y0 (20:	14)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	6 P-all	Т
Acer rubrum	red maple	Tree			27			25			8			3			2						
Alnus serrulata	hazel alder	Shrub			1						3			4									
Baccharis halimifolia	eastern baccharis	Shrub			34			28						32									
Betula nigra	river birch	Tree	97	97	101	91	91	91	98	98	98	102	102	102	104	104	104	106	106	106	106	106	106
Cephalanthus occidentalis	common buttonbush	Shrub															2						
Fraxinus pennsylvanica	green ash	Tree	113	113	117	114	114	115	117	117	118	119	119	119	123	123	125	124	124	124	126	126	126
Ligustrum sinense	Chinese privet	Exotic			9			2															
Liquidambar styraciflua	sweetgum	Tree			160			132			135			184			86						
Liriodendron tulipifera	tuliptree	Tree	7	7	7	8	8	10	13	13	13	13	13	13	14	14	14	25	25	25	20	20	20
Mimosa	sensitive plant	Exotic			1			4															
Morella cerifera	wax myrtle	Shrub						3															
Nyssa biflora	swamp tupelo	Tree	48	48	54	48	48	49	53	53	54	54	54	54	59	59	59	64	64	64	60	60	60
Nyssa sylvatica	blackgum	Tree	6	6	12	6	6	11	7	7	9	8	8	8	8	8	8	9	9	9	10	10	10
Pinus	pine	Tree			159			73			232												
Platanus occidentalis	American sycamore	Tree	111	111	116	111	111	115	117	117	118	123	123	126	128	128	128	124	124	124	124	124	124
Prunus serotina	black cherry	Tree						1															
Pyrus calleryana	Callery pear	Exotic			3																		
Quercus laurifolia	laurel oak	Tree			1																		
Quercus michauxii	swamp chestnut oak	Tree	23	23	24	25	25	28	57	57	57	60	60	60	77	77	77	91	91	91	108	108	108
Quercus pagoda	cherrybark oak	Tree	40	40	49	44	44	45	12	12	13	12	12	12	12	12	12	14	14	14			
Quercus phellos	willow oak	Tree	70	70	79	66	66	68	71	71	79	77	77	79	97	97	97	104	104	104	125	125	125
Quercus rubra	northern red oak	Tree	1	1	1	1	1	2	1	1	4	1	1	7	1	1	3						
Rhus copallinum	flameleaf sumac	Shrub			21						2												
Salix nigra	black willow	Tree			26			21			38			13									
Salix sericea	silky willow	Shrub															3						
Sambucus	elderberry	Shrub			1																		
Taxodium distichum	bald cypress	Tree	186	186	186	185	185	185	186	186	186	189	189	189	190	190	190	189	189	189	206	206	206
Ulmus	elm	Tree						8															
Ulmus alata	winged elm	Tree		I	1				I	I			1				I	1	l		1	1	1
Ulmus americana	American elm	Tree						1														1	1
		Stem count	702	702	984	699	699	910	732	732	935	758	758	973	813	813	910	850	850	850	885	885	885
		size (ares)		51			51			51			51			51			51			51	
	size (A						1.26		I	1.26			1.26			1.26		1	1.26		1	1.26	
		Species count	11	11	24	11	11	22	11	11	17	11	11	16	11	11	15	10	10	10	9	9	9
		Stems per ACRE	557	557	781	555	555	722	581	581	742	601	601	772	645	645	722	674	674	674	702	702	702

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes,

APPENDIX 4. Morphological Summary Data and Plots

Table 10a. Baseline Stream Data Summary Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

Devils Racetrack- West

		Pre-Restorat	tion Condition					Reference	Reach Data					De	esign			As-Built	/Baseline	
Parameter	Gage	Devil's Race	etrack - West	Scout	West 1	Scout	East 2	Scout	West 2	Johanr	na Creek	Jarman Oak		acetrack - West Reach 1)		etrack - West each 2)		etrack - West ach 1)		etrack - Wes ach 2)
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min Max	Min	Max	Min	Max	Min	Max	Min	Max
mension and Substrate - Shallow																				
Bankfull Width (ft)	4.8	8.0	2.6	6.3	4.7	6.1	5.6	7.6	9	9.7	9.3		9.0	1	11.5	4.7	9.6		7.7
Floodprone Width (ft)	7.8	18.0	>	20	>	50	>	·50	>	75	>150	100	300	100	300	>	200	>	·200
Bankfull Mean Dept	n	0.8	1.2	0.3	0.5	1.1	1.3	0.7	1.0	().8	1.2		0.6		0.8	0.4	0.9		0.5
Bankfull Max Dept	ı	1.3	1.6	0.5	0.7	1.7	1.8	1.2	1.3	1	.1	2.3	0.9	1.1	1.1	1.5	1.1	1.4		0.7
Bankfull Cross Sectional Area (ft ²) N/A	5.7	6.3	1.3	2.0	6.0	6.9	5.3	5.4	7.2	7.8	11.6		5.8		9.5	2.1	8.5		4.0
Width/Depth Ratio	D	4.0	10.5	5.4	19.4	3.6	5.4	5.7	11.0	10.1	19.7	7.4	14.0	14.5	1	14.0	10.6	14.8	1	14.5
Entrenchment Ratio	D	1.6	2.2	>	2.2	>	2.2	>	2.2	8.0	9.6	16.1 26.9	11.1	33.3	8.7	26.1	>20.9	>42.5	>	26.1
Bank Height Ratio	1	1.9	4.5	1.1	1.3	1	.0	1.1	1.2	1	0	1.0	1.0	1.1	1.0	1.1	1	1.0		1.0
D50 (mm)	0.	464														1	N/A	1	N/A
file																				
Shallow Length (ft)			-	0.026 0.047												3.7	86.8	7.4	54.
Shallow Slope (ft/ft)			0.026	0.026 0.047		/A	0.033	0.051	N	I/A	0.0129	0.0036	0.0277	0.0023	0.0072	0.0013	0.0593	0.0008	0.01
Pool Length (ft)			-	0.6					1 .							5.5	63.1	18.7	72.
Pool Max Depth (ft		1	1.2	C			/A	1.7	1.9	1	5	3.1	0.9	2.1	1.1	2.5	1.1	2.9	1.4	1.
Pool Spacing (ft)			27	67	N	/A	21	27	16	59	32 55	14	63	18	81	9	132	38	10
Pool Volume (ft ³)				0.6		-							<u> </u>						
tern	/1				0.6 27 67															
Channel Beltwidth (ft)			8.7	0.6		16.2	9.1	9.8	14.0	20.0	21.0 36.0	12.0	72.0	15.0	92.0	13.0	53.0	16.0	73
Radius of Curvature (ft				3.1	9.0	5.5	16.0	5.4	6.8	15.0	27.0	13.7 18.6	14.0	43.0	17.0	55.0	12.0	40.0	17.0	35
Rc:Bankfull Width (ft/ft				0.6	1.6	1.0	3.0	0.8	1.0	1.5	2.8	1.5 2.0	1.5	4.8	1.5	4.8	2.6	4.2	2.2	4.
Meander Length (ft				39.8	84.8	36.5	63.2	32.5	36.9		0.0	N/A	27	153	35	196	52	133	70	13
Meander Width Ratio				1.6	2.6	1.3	3.0	1.4	1.5	1.4	2.1	2.3 2.9	1.3	8.0	1.3	8.0	2.8	5.5	2.1	9.
strate, Bed and Transport Parameters	·	L		210	210	110	010		210	2		210 210	210	0.0	210	0.0		515	2.2	
Ri%/Ru%/P%/G%/S%	6																			
SC%/Sa%/G%/C%/B%/Be%						1				1					1					
d16/d35/d50/d84/d95/d10	0	0 168/0 33/0 4	464/1.23/2.0/9.6	-											-			N/A		N/A
Reach Shear Stress (Competency) lb/ft	- N/A	0.18	0.23															1/A		N/A
Max part size (mm) mobilized at bankful		0.10	0.25															.,		
Stream Power (Capacity) W/m																				
ditional Reach Parameters	I																			_
Drainage Area (SM)	0	1.77	0	06	0	67	0	.34	0	.90	1.27	1	0.60		0.70		.60		0.70
Watershed Impervious Cover Estimate (%			:1%											<1%		<1%		:1%		<1%
Rosgen Classification			Gc5		 C5b		5		E5		/C5	E6		E/C5		E/C5		/C5		C
Bankfull Velocity (fps		1.5	1.8	1.3	2.0	2.5	2.9	1.2	1.2	1.8	1.9	0.95		1.7		1.2	1.2	4.8		3.3
Bankfull Discharge (cfs		9.2	1.8				2.9 7.5		5.4		4.0	11.0		1.7		1.2		4.8		3.3 13.0
Q-NFF regression			10.6	2.6		1			J. 4	1	4.0	11.0		10.0		13.0	<u>+</u>	.0.0		3.0
Q-NFF regression Q-USGS extrapolation																				_
Q-Manning																	4			
Valley Length (ft						1				1							 	220		
Channel Thalweg Length (ft			976											4,245		966		239		962
Sinuosit	<u>/</u>		1.0	1			.2		1.2		2	1.4	1.2	1.6	1.2	1.6		1.2		1.4
Water Surface Slope (ft/ft)																		0054		0015
Bankfull Slope (ft/ft)	0.0	0041	0.0	260	0.0	170	0.0	0040	0.0	022	0.0040	0.0025	0.0087	0.0016	0.0022	0.0053	0.0054	0.0017	0.0

Table 10b. Baseline Stream Data Summary Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

Devils Racetrack- East

		Pre-Restorat	ion Condition					Reference	Reach Data							De	esign				As-Built	/Baseline		
Parameter	Gage	Devil's Rac	Devil's Racetrack - East Sc Min Max Min 8.1 10.4 2.6 14.2 18.6 1 1.0 1.8 0.3 2.1 2.8 0.5 14.2 19.1 1.3 5.0 7.8 5.4 1.6 1.8 2 2.6 4.3 1.1 0.179 0.179 0.026 0.026 27 27 27 8.7 8.7 8.7 8.7 8.7 1.6 39.8 1.6 39.8 1.6 	Scout	West 1	Scout Ea	ast 2	Scout	West 2	Johann	a Creek	Jarman C	ak	Devil's Race (Rea	etrack - East ch 1)		etrack - East ach 2)	Devil's Racetrack (Reach 3)		Racetrack - East Reach 1)		etrack - East ach 2)		icetrack - Eas each 3)
		8.1 10.4 14.2 18.6 1.0 1.8 2.1 2.8 14.2 19.1 5.0 7.8 1.6 1.8 2.6 4.3 0.179	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min N	ax Min	Max	Min	Max	Min	Max
imension and Substrate - Shallow		Devil's Racetrack - Easi Min Max 8.1 10.4 14.2 18.6 1.0 1.8 2.1 2.8 14.2 19.1 5.0 7.8 1.6 1.8 2.6 4.3 0.179 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																						
Bankfull V		-	-	2.6	6.3	4.7	6.1	5.6	7.6	9		9.3			3.0		8.0	8.0	12.2	13.7		3.2		
Floodprone V	Vidth (ft)	14.2	18.6	>	20	>50		>	>50	>	75	>150		100	500	100	500	100 5	00	>300	>	300		
Bankfull Mea	an Depth	1.0	1.8	0.3	0.5	1.1	1.3	0.7	1.0		.8	1.2		1	.0		0.6		0.8	1.1).7		
Bankfull M	ax Depth	2.1	2.8	0.5	0.7	1.7	1.8	1.2	1.3	1	1	2.3		1.4	1.8	0.8	1.0	0.9	1.3	1.7		1.1		
Bankfull Cross Sectional A	Area (ft ²) N/A	14.2	19.1	1.3	2.0	6.0	6.9	5.3	5.4	7.2	7.8	11.6		12	2.8		4.8		10.3	13.9	5	5.7		
Width/Dep	pth Ratio	5.0	7.8	5.4	19.4	3.6	5.4	5.7	11.0	10.1	19.7	7.4		13.0	13.5	14.0	14.5		12.1	14.6		1.9		
Entrenchme	ent Ratio	1.6	1.8	>2	2.2	>2.2		>	2.2	8.0	9.6	16.1	26.9	7.7	38.5	12.5	62.6		>21.9	>24.5	>3	86.5		
Bank Heig	ght Ratio	2.6	4.3	1.1	1.3	1.0		1.1	1.2	1	0	1.0		1.0	1.1	1.0	1.1			1.0	1	L.O		
D	950 (mm)	0.	179																	N/A	Ν	I/A		
rofile																								
Shallow Le	ength (ft)			-						-				-					13.0	80.1	20.8	42.4	11.3	25.9
Shallow Slo	pe (ft/ft)			0.026	0.047	N/A		0.033	0.051	N	/A	0.0129)	0.0007	0.0025	0.0377	0.0671		0.0004	0.0099	0.0192	0.0318	0.0072	0.0675
Pool Le	ength (ft) N/A			-						-				-					16.0	77.3	16.5	66.1	13.0	34.2
Pool Max D	Depth (ft)).6	N/A		1.7	1.9	1	5	3.1		1.4	3.2	0.8	2.0	1.2	1.9	3.4	1.7	2.7	1.4	2.5
Pool Spa	acing (ft)				67	N/A		21	27	16	59	32	55	21	91	39	64		26	131	43	73	25	70
Pool Vol	ume (ft ³)																							
attern																								
Channel Belty	width (ft)			8.7	14.3	7.2	16.2	9.1	9.8	14.0	20.0	21.0	36.0	17.0	65.0	10.0	40.0		15.0	55.0	21	41	12	32
Radius of Curva	ature (ft)			3.1	9.0	5.5	16.0	5.4	6.8	15.0	27.0	13.7	18.6	20.0	62.0	12.0	36.0		18.0	65.0	12	26	10	35
Rc:Bankfull Wid	dth (ft/ft) N/A		2 2 2 2 2 2 2 2 3		1.6	1.0	3.0	0.8	1.0	1.5	2.8	1.5	2.0	1.5	4.8	1.5	4.5		1.5	4.7	1.5	3.2		
Meander Le	ength (ft)			39.8	84.8	36.5	63.2	32.5	36.9	50	0.0	N/A		39	221	64	136		62	203	101	140	52	112
Meander Wig	dth Ratio			1.6	2.6	1.3	3.0	1.4	1.5	1.4	2.1	2.3	2.9	1.3	5.0	1.3	5.0		1.2	4.0	2.6	5.0		
ubstrate, Bed and Transport Parame	eters	•		•	•					•	•			•			•	•		•				
Ri%/Ru%/P%	%/G%/S%																							
SC%/Sa%/G%/C%/	/B%/Be%																							
d16/d35/d50/d84/c	195/d100 N/A	-/-/0.179/0	.642/1.0/9.6	-						-										N/A	Ν	I/A	1	N/A
Reach Shear Stress (Competen	cy) lb/ft ²	C	.01											-						N/A	Ν	I/A	1	N/A
Max part size (mm) mobilized at	bankfull																							
Stream Power (Capacit	x) W/m ²																							
dditional Reach Parameters																								
Drainage A	rea (SM)	1	.30	0.	.06	0.67	,	0	.34	0.	.90	1.27		1.	14	1	30			1.14	1	.30		
Watershed Impervious Cover Estin	mate (%)													<1			:1%	<1%		<1%	<	1%	<	<1%
Rosgen Class	sification	(ic5	E/0	C5b	E5			E5	E5,	/C5	E6		E/	C5	E	/C5	E/C5		С		С		
Bankfull Velo		0.3	0.4	1.3	2.0	2.5	2.9	1.2	1.2	1.8	1.9	0.95		1	.2		3.5		1.2	1.6	3	3.0		
Bankfull Discha	arge (cfs)		3.5	2	.6	17.5	i	(5.4	14	4.0	11.0		16	5.0	1	.7.0			16.0	1	7.0		
Q-NFF re	gression																							
Q-USGS extra																								
Q-N	/Jannings																							
Valley Le	ength (ft)			-						-				-	-									
Channel Thalweg Le	ength (ft)	4,	844	-						-				4,8	340		313	385		4,833	3	10	:	372
	Sinuosity		1.0	1	1	1.2		:	1.2	1	2	1.4		1.1	1.3	1.1	1.2			1.1	1	l.1		1.1
Water Surface Slop	$(ft/ft)^2$			-						-				-		1								
Bankfull Slo		0.	0003	0.0	260	0.017	0	0.0	0040	0.0	022	0.0040)	0.0004	0.0008	0.0224	0.0251		0.0007	0.0008	0.0153	0.0166	0.0219	0.0231

Table 10c. Baseline Stream Data Summary

Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

Southeast Branch																									
		Pre-Restorat	ion Condition					Reference	Reach Data							De	sign					As-Built,	Baseline		
Parameter	Gage	Southea	st Branch	Scout	West 1	Scout	East 2	Scout	West 2	Johann	a Creek	Jarmar	ı Oak	Southeas (Rea			ist Branch ach 2)	Southeas (Read			st Branch ach 1)	Southea: (Rea	st Branch ch 2)		ist Branch ach 3)
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		Max	Min	Max
Dimension and Substrate - Shallow					•				•												•				
Bankfull Width (ft)		2.7	5.7	2.6	6.3	4.7	6.1	5.6	7.6	9	.7	9.3	3	3.	0	4	4.0	5.	4	3	3.0	3	.8	5	5.3
Floodprone Width (ft)		8.6	11.4	>	20	>5	50	>	50	>	75	>15	60	25	35	50	70	100	300	>	30	>	50	>2	200
Bankfull Mean Depth		0.2	0.4	0.3	0.5	1.1	1.3	0.7	1.0	0	.8	1.2	2	0.	5	(0.6	1.	0	0).3	0	.4	С	0.4
Bankfull Max Depth		0.4	1.4	0.5	0.7	1.7	1.8	1.2	1.3	1	.1	2.3	3	0.4	0.6	0.5	0.7	0.8	1.2	0).5	0	.5	C	0.6
Bankfull Cross Sectional Area (ft ²)	N/A	1.1	1.4	1.3	2.0	6.0	6.9	5.3	5.4	7.2	7.8	11.	6	1.	0	1	1.5	2.	5	0).8	1	.3	2	2.1
Width/Depth Ratio		6.8	24.3	5.4	19.4	3.6	5.4	5.7	11.0	10.1	19.7	7.4	1	9.0	10.0	10.0	12.0	11.0	12.0	11	1.4	10).8	1	3.8
Entrenchment Ratio		1.5	4.2		2.2		.2	-	2.2	8.0	9.6	16.1	26.9	8.3	11.7	12.5	17.5	18.5	55.6		9.9	>1			37.5
Bank Height Ratio		2.2	6.0	1.1	1.3	1.		1.1	1.2	1		1.0		1.0	1.1	1.0	1.1	1.0	1.2		1.0	1			1.0
D50 (mm)			409		110		-			_			-	110		1.0		110			I/A		/A		I/A
Profile																					, ·				, ·
Shallow Length (ft)				-			-				-				-	<u> </u>			-	2.1	64.4	3.4	144.4	6.0	47.3
Shallow Slope (ft/ft)				0.026	0.047	N		0.033	0.051	N		0.01		0.0162	0.0681	0.0144	0.0384	0.0035	0.0285	0.0010	0.0803	0.0021	0.0272	0.0005	0.0168
Pool Length (ft)					0.047				0.051			0.01		0.0102		0.0144	0.0304	0.0035		2.1	36.7	3.1	33.6	3.2	61.3
Pool Max Depth (ft)	N/A	0).4).6	N		1.7	1.9	1		3.1		0.5	1.1	0.4	1.2	0.5	1.5	0.7	1.5	0.5	1.0	0.5	1.1
Pool Spacing (ft)				27	67	N/		21	27	16	59	32	55	15	24	20	32	9	38	4	76	8	90	14	52
				27	67	14,	A	21	27	10	59	52	35	15	24	20	52	9	30	4	70	0	90	14	52
Pool Volume (ft ³) Pattern																									
Channel Beltwidth (ft)				8.7	14.3	7.2	16.2	9.1	9.8	14.0	20.0	21.0	36.0	4.0	9.0	5.0	12.0	7.0	43.0	E 2	11.2	6.8	14.3	12.7	32.8
Radius of Curvature (ft)				3.1	9.0	5.5	16.2	5.4	9.8 6.8	14.0	20.0	21.0 13.7	18.6	4.0 5.0	9.0		12.0	8.0		5.3 5.0	-	10.0		12.7	
	NI / A			-	-							-				6.0			26.0		23.5		25.6		29.5
Rc:Bankfull Width (ft/ft)	N/A			0.6	1.6	1.0	3.0	0.8	1.0	1.5	2.8	1.5	2.0	1.5	4.5	1.5	4.5	1.5	4.8	1.7	7.8	2.6	6.7	2.0	5.6
Meander Length (ft)				39.8	84.8	36.5	63.2	32.5	36.9	50		N/.		24	51	32	68	16	92	22	63	33	70	32	74
Meander Width Ratio		-		1.6	2.6	1.3	3.0	1.4	1.5	1.4	2.1	2.3	2.9	1.3	3.0	1.3	3.0	1.3	8.0	1.8	3.7	1.8	3.8	2.4	6.2
Substrate, Bed and Transport Parameters	[r						r				1					r				
Ri%/Ru%/P%/G%/S%						-															-				
SC%/Sa%/G%/C%/B%/Be%		0.00/0.00/0.4														-					-		/a	——	
d16/d35/d50/d84/d95/d100	N/A		1/0.94/1.6/9.6	-			-				-												/A		I/A
Reach Shear Stress (Competency) lb/ft ²		0.	.51												-				-	N	I/A	N	/A	N	N/A
Max part size (mm) mobilized at bankfull																									
Stream Power (Capacity) W/m ²																									
Additional Reach Parameters			10	^	00	^	~ 7		24		00		7		12		07		10		02		07		10
Drainage Area (SM)			.19		.06	0.			.34	0.		1.2		0.0			.07	0.1			.03		07		.10
Watershed Impervious Cover Estimate (%)			1%											<1			1%	<1			1%		1%		:1%
Rosgen Classification			/F5		C5b	E			5	E5,		E6						E/(/C5	E/			/C5
Bankfull Velocity (fps)			2.2	1.3	2.0	2.5	2.9	1.2	1.2	1.8	1.9	0.9		1.			1.4	1.			9	1			1.4
Bankfull Discharge (cfs)		-	2.4	2	2.6	17	.5	e	5.4	14	.0	11.	0	1.	5	2	2.0	3.	0	1	1.5	2	.0	3	3.0
Q-NFF regression																									
Q-USGS extrapolation	N/A																								
Q-Mannings																									
Valley Length (ft)				-			-				-														
Channel Thalweg Length (ft)		2,9	976	-			-				-			1,5	59	7	'16	61	.7		559		13		516
Sinuosity		1	1.0	1	1	1.	2	1	2	1	.2	1.4	1	1.1	1.2	1.1	1.2	1.2	1.6		1.6	1			1.3
Water Surface Slope (ft/ft) ²		-					-				-				-	-			-	0.0)221	0.0	174	0.0	0030
Bankfull Slope (ft/ft)		0.0	0230	0.0	260	0.0	170	0.0	040	0.0	022	0.00	40	0.0108	0.0227	0.0096	0.0128	0.0025	0.0089	0.0)222	0.0015	0.0119	0.0028	0.0030

Table 10d. Baseline Stream Data Summary

Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

Middle Branch

Aiddle Branch		Pre-Restoratio	on Condition					Reference	Reach Data						De	sign			As-Built	/Baseline	
Parameter	Gage	Middle I	Branch	Scout	West 1	Scou	t East 2	Scout	: West 2	Johar	nna Creek	Jarm	nan Oak		e Branch ach 1)	Middle	e Branch ach 2)		e Branch ach 1)		e Branch each 2)
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
imension and Substrate - Shallow			mux		max				max				intex		max						1
Bankfull Width (ft)		1.8	2.3	2.6	6.3	4.7	6.1	5.6	7.6		9.7		9.3	1	3.0		1.0		2.2		3.4
Floodprone Width (ft)	F	4.6	6.8	>		;	>50	;	>50		>75	>	>150	40	60	100	300	>	»50	>	>200
Bankfull Mean Depth	F	0.2	0.3	0.3	0.5	1.1	1.3	0.7	1.0		0.8		1.2	(0.3	().3	(0.3		0.3
Bankfull Max Depth	Ē	0.3	0.6	0.5	0.7	1.7	1.8	1.2	1.3		1.1		2.3	0.4	0.5	0.5	0.6	(0.5		0.5
Bankfull Cross Sectional Area (ft ²)	N/A	0.4	0.5	1.3	2.0	6.0	6.9	5.3	5.4	7.2	7.8	1	11.6	(0.9	1	L.5	(0.7		1.1
Width/Depth Ratio	Ī	6.9	12.0	5.4	19.4	3.6	5.4	5.7	11.0	10.1	19.7		7.4	10.0	10.5	10.0	12.0	6	5.7	1	10.1
Entrenchment Ratio	Ē	2.0	3.8	>2	2.2	>	2.2	>	2.2	8.0	9.6	16.1	26.9	33.3	100.0	22.2	66.7	>2	22.9	>	58.8
Bank Height Ratio	F	5.3	6.5	1.1	1.3		1.0	1.1	1.2		1.0		1.0	1.0	1.1	1.0	1.1		1.0		1.0
D50 (mm)	F	0.08	83						<u>.</u>									Ν	I/A	1	N/A
rofile																				•	
Shallow Length (ft)				-														2.5	46.6	7.9	16.1
Shallow Slope (ft/ft)	- E		-	0.026	0.047	1	N/A	0.033	0.051		N/A	0.	.0129	0.0144	0.0489	0.0002	0.0074	0.0008	0.0492	0.0059	0.0236
Pool Length (ft)	. 1				-							-						2.9	17.3	11.2	19.8
Pool Max Depth (ft)	N/A		-	0	.6	1	N/A	1.7	1.9		1.5		3.1	0.4	1.0	0.5	1.0	0.5	1.2	0.6	0.9
Pool Spacing (ft)	F		-	27	67				27	16	59	32	55	15	24	5	22	8	56	18	24
Pool Volume (ft ³)	- E						N/A 2									_	·	_			
attern																					
Channel Beltwidth (ft)				8.7	14.3	7.2	2 16.2 9		9.8	14.0	20.0	21.0	36.0	4.0	9.0	6.0	36.0	4.1	9.4	6.7	20.9
Radius of Curvature (ft)	F		-	3.1	9.0	5.5			6.8	15.0	27.0	13.7	18.6	5.0	14.0	7.0	22.0	7.0	23.9	9.2	23.5
Rc:Bankfull Width (ft/ft)	N/A		-	0.6	1.6	1.0	3.0	0.8	1.0	1.5	2.8	1.5	2.0	1.7	4.5	1.5	4.8	3.2	10.9	2.7	6.9
Meander Length (ft)	, L		-	39.8	84.8			32.5	36.9		50.0		N/A	24	51	14	77	23	44	32	57
Meander Width Ratio	F		-	1.6	2.6		36.5 63.2 32 1.3 3.0 1		1.5	1.4	2.1	2.3	2.9	1.3	3.0	1.3	8.0	2.2	4.3	2.0	6.1
ubstrate, Bed and Transport Parameters				-	-	-	1.5 5.0		-					-		-				-	1
Ri%/Ru%/P%/G%/S%																					
SC%/Sa%/G%/C%/B%/Be%	- 1																				
d16/d35/d50/d84/d95/d100	. T	-/-/0.083/0.4	198/0.9/9.6	-														N	I/A	1	N/A
Reach Shear Stress (Competency) lb/ft ²	N/A	0.24	0.27															Ν	, \/A	r	N/A
Max part size (mm) mobilized at bankfull	1													-							
Stream Power (Capacity) W/m ²	- 1																				
Additional Reach Parameters																					
Drainage Area (SM)		0.0	2	0.	06	C	.67	C).34		0.90	1	1.27	0	.01	0	.01	0	.01	0	0.01
Watershed Impervious Cover Estimate (%)	F	<19	%												1%	<	1%		:1%	<	<1%
Rosgen Classification	ŀ	GS		E/0	C5b	E5			E5	E	5/C5		E6		I/A		/C5		/C5		C5
Bankfull Velocity (fps)	F	1.4	1.5	1.3	2.0	2.5 2.9		1.2	1.2	1.8	1.9	(0.95		1.3	().8		1.4		0.9
Bankfull Discharge (cfs)	F	0.6	0.7	2		17.5			6.4		14.0		11.0		1.0		L.O		1.0		1.0
Q-NFF regression	ŀ		-																		
Q-USGS extrapolation	N/A		-																		
Q-Mannings	· F		-																		
Valley Length (ft)	ŀ		-	-														g	985		
Channel Thalweg Length (ft)	F	1,73	36	-						1		1		1.	060	4	36		.058	4	432
Sinuosity	F	1.0		1	.1	1	1.2	:	1.2		1.2	1	1.4	1.1	1.2	1.2	1.5	,	1.1		1.2
Water Surface Slope (ft/ft) ²	F																		0145		.0064
Bankfull Slope (ft/ft)	_	0.02			260		0170		0040		.0022	1	.0040	0.0096	0.0163	0.0024	0.0077		0148	0.0024	0.0066

Table 10e. Baseline Stream Data Summary

Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

Southwest Branch

		Pre-Restorat	tion Condition					Reference	Reach Data						De	esign			As-Built/	Baseline	
Parameter	Gage		est Branch		West 1		t East 2		West 2		na Creek	Jarma	n Oak	(Reach	est Branch les 1 - 3)	(Rea	est Branch ach 4)	Southwe (Reach	es 1 - 3)	(Rea	est Branch ach 4)
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Shallow		1 22	1			1	L						2	-		1 -		T			
Bankfull Width (· ·	2.8	3.4	2.6	6.3	4.7	6.1	5.6	7.6		9.7	9.			3.0		3.3	-			2.4
Floodprone Width (4.9	6.2	>			-50		•50		•75	>1		40	60	100	300	-			200
Bankfull Mean Dep		0.2	0.3	0.3	0.5	1.1	1.3	0.7	1.0		0.8	1.			0.3		0.3	-).3
Bankfull Max Dep		0.3	0.9	0.5	0.7	1.7	1.8	1.2	1.3		1.1	2.		0.5	0.6	0.4	0.5	-).4
Bankfull Cross Sectional Area (f		0.8	0.9	1.3	2.0	6.0	6.9	5.3	5.4	7.2	7.8	11					1.0	-).6
Width/Depth Rat		10.0	14.0	5.4	19.4	3.6	5.4	5.7	11.0	10.1	19.7	7.		9.0	10.0	10.0	12.0	-			9.7
Entrenchment Rat		1.5	1.9		2.2		2.2		2.2	8.0	9.6	16.1	26.9	13.3	20.0	30.3	90.9	-			2.3
Bank Height Rat		10.0	10.7	1.1	1.3	-	L.O	1.1	1.2	1	1.0	1.	.0	1.0	1.1	1.0	1.1	-			1.0
D50 (mr	n)	0.	105															-		N	I/A
Profile				r				1		1		1		-							
Shallow Length (·											3.8	51.6	8.3	44.1
Shallow Slope (ft/				0.026	0.047		I/A	0.033	0.051		I/A	0.01		0.0257	0.0648	0.0109	0.0308	0.0015	0.0339	0.0032	0.0228
Pool Length (N/A											1.7	19.9	4.3	23.4
Pool Max Depth (0			N/A 1		1.9		1.5	3.		0.5	1.1	0.4	1.0	0.3	1.2	0.6	1.4
Pool Spacing (-			27	67	1	I/A	21	27	16	59	32	55	15	24	5	23	8	53	12	51
Pool Volume (f	³)																				
Pattern					l			l				1		l							
Channel Beltwidth (8.7	14.3	7.2	16.2	9.1	9.8	14.0	20.0	21.0	36.0	4.0	9.0	4.0	26.0	3.9	10.2	5.2	18.9
Radius of Curvature (7			3.1	9.0	5.5	16.0	5.4	6.8	15.0	27.0	13.7	18.6	5.0	14.0	5.0	16.0	10.0	19.0	7.4	20.3
Rc:Bankfull Width (ft/				0.6	1.6	1.0	3.0	0.8	1.0	1.5	2.8	1.5	2.0	1.7	4.5	1.5	4.8	-		3.1	8.5
Meander Length (39.8	84.8	36.5	63.2	32.5	36.9		0.0	N/		24	51	10	56	27	50	28	54
Meander Width Rat	io	· · ·		1.6	2.6	1.3	3.0	1.4	1.5	1.4	2.1	2.3	2.9	1.3	3.0	1.3	8.0	-		2.2	7.9
Substrate, Bed and Transport Parameters				1				1				1						1			
Ri%/Ru%/P%/G%/S																					
SC%/Sa%/G%/C%/B%/B6																					
d16/d35/d50/d84/d95/d10	- N/A		5/0.336/0.4/9.6							-									/A		I/A
Reach Shear Stress (Competency) lb/		0.37	0.42													· · · · · ·		N	/A	N	I/A
Max part size (mm) mobilized at bankf																					
Stream Power (Capacity) W/I	nť																				
Additional Reach Parameters		-		-				-		-				-		-		-			
Drainage Area (SI	,		.03		06		.67		.34		.90	1.2			.02		.02	0.			.02
Watershed Impervious Cover Estimate (:1%												1%		1%		1%		1%
Rosgen Classificatio			G5		25b		E5		E5		5/C5	E			NA		/C5		/A		/C5
Bankfull Velocity (fp	- /	1.8	1.9	1.3	2.0		2.5 2.9		1.2	1.8	1.9	0.9			.7		1.3	N			2.5
Bankfull Discharge (cl	<u></u>	1.6	1.7	2	.b	1	17.5		5.4	14	4.0	11	0	1	1.5	1	1.5	1	.5	1	L.5
Q-NFF regressio																					
Q-USGS extrapolation																					
Q-Mannin	5-																				
Valley Length (
Channel Thalweg Length (,	080												50		82		46		79
Sinuosi	- /		1.0	1			1.2		1.2		1.2	1.		1.1	1.2	1.1	1.5		.0		L.3
Water Surface Slope (ft/f				-											 1			0.0			090
Bankfull Slope (ft/	ft)	0.0	0320	0.0	260	0.0	0170	0.0	0040	0.0	0022	0.00	040	0.0171	0.0216	0.0078	0.0096	0.0186	0.0191	0.0085	0.0088

Table 10f. Baseline Stream Data Summary

Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

North Branch

North Branch																
		Pre-Restoration Condition					Reference	Reach Data					Des	sign	As-Built	/Baseline
Parameter	Gage	North Branch	Scou	t West 1	Scout	t East 2	Scout	West 2	Johann	a Creek	Jarma	ın Oak	North	Branch	North	Branch
		Min Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Shallow			1													
Bankfull Width (ft)			2.6	6.3	4.7	6.1	5.6	7.6	9			.3	9		8.6	9.3
Floodprone Width (ft)				>20		»50		50	>			.50	100	300		200
Bankfull Mean Depth			0.3	0.5	1.1	1.3	0.7	1.0	0			.2	0		0.7	0.7
Bankfull Max Depth			0.5	0.7	1.7	1.8	1.2	1.3	1			.3	0.9	1.1	1.0	1.2
Bankfull Cross Sectional Area (ft ²)	N/A		1.3	2.0	6.0	6.9	5.3	5.4	7.2	7.8		1.6	5		5.7	6.5
Width/Depth Ratio			5.4	19.4	3.6	5.4	5.7	11.0	10.1	19.7		.4	14.0	14.5	13.1	13.2
Entrenchment Ratio				>2.2		2.2		2.2	8.0	9.6	16.1	26.9	10.9	32.6	>21.6	>23.2
Bank Height Ratio			1.1	1.3	1	1.0	1.1	1.2	1	.0	1	.0	1.0	1.1		1.0
D50 (mm)															N	N/A
Profile																
Shallow Length (ft)									-				-		5.3	35.8
Shallow Slope (ft/ft)			0.026	0.047		N/A	0.033	0.051	N,		0.0		0.0010	0.0065	0.0013	0.0163
Pool Length (ft)	N/A						-		-				-		8.5	80.8
Pool Max Depth (ft)	-			0.6		N/A	1.7	1.9	1			.1	0.9	2.1	1.0	3.8
Pool Spacing (ft)			27	67	N	N/A	21	27	16	59	32	55	15	64	17	101
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)			8.7	14.3	7.2	16.2	9.1	9.8	14.0	20.0	21.0	36.0	12.0	74.0	16	72
Radius of Curvature (ft)			3.1	9.0	5.5	16.0	5.4	6.8	15.0	27.0	13.7	18.6	14.0	44.0	15	40
Rc:Bankfull Width (ft/ft)	N/A		0.6	1.6	1.0	3.0	0.8	1.0	1.5	2.8	1.5	2.0	1.5	4.8	1.7	4.3
Meander Length (ft)			39.8	84.8	36.5	63.2	32.5	36.9	50			/A	28	156	79	129
Meander Width Ratio			1.6	2.6	1.3	3.0	1.4	1.5	1.4	2.1	2.3	2.9	1.3	8.0	1.9	7.7
Substrate, Bed and Transport Parameters									1							
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100	N/A						-		-	-	-					N/A
Reach Shear Stress (Competency) lb/ft ²	-													-	N	N/A
Max part size (mm) mobilized at bankfull																
Stream Power (Capacity) W/m ²																
Additional Reach Parameters		0.00		0.00				24		20	-	27		10		10
Drainage Area (SM)		0.08	· · · · ·	0.06		.67		34	0.			27	0.			.19
Watershed Impervious Cover Estimate (%)		<1%	-						-					L%		:1% C5
Rosgen Classification		N/A		:/C5b		E5		-	E5,			-	E/			
Bankfull Velocity (fps)			1.3	2.0	2.5	2.9	1.2	1.2	1.8	1.9		95	0		0.8	0.9
Bankfull Discharge (cfs)				2.6	1	.7.5	6	.4	14	+.U	11	1.0	5	.0	5	5.0
Q-NFF regression	N/A															
Q-USGS extrapolation	IN/A								-							
Q-Mannings																
Valley Length (ft)											-					410
Channel Thalweg Length (ft)				1.1		1.2		.2				.4	2,4			410 31
Sinuosity				1.1					1			.4 	1.2	1.6		31 0016
Water Surface Slope (ft/ft) ²												040				
Bankfull Slope (ft/ft)			0	.0260	0.0	0170	0.0	040	0.0	022	0.0	040	0.0007	0.0020	0.0004	0.0020

Table 11a. Morphology and Hydraulic Summary (Dimensional Parameters - Cross Section)

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 6 - 2019

Devil's Racetrack (West)

			Cross	Section	n 1 (Sha	allow)					Cro	ss Secti	on 2 (F	ool)					Cross	Sectio	n 3 (Sha	allow)					Cro	ss Secti	ion 4 (P	ool)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	135.4	135.4	135.4	135.4	135.4	135.5	135.5		135.1	135.1	135.1	135.1	135.1	135.2	135.0		131.0	131.0	131.0	131.0	131.0	131.2	131.0		130.6	130.6	130.6	130.6	130.6	130.8	130.7	
Low Bank Elevation (ft)	135.4	135.4	135.4	135.4	135.4	135.4	135.5		135.1	135.1	135.1	135.1	135.1	135.1	135.0		131.0	131.0	131.0	131.0	131.0	131.0	131.0		130.6	130.6		130.6	130.6	130.6	130.7	
Bankfull Width (ft)	9.6	7.6	7.7	7.6	7.8	9.0	9.0		10.7	10.1	10.2	9.8	9.2	8.1	7.2		9.5	10.0	10.0	10.0	9.3	10.0	8.8		11.1	11.4	11.4	11.4	11.2	11.8	11.4	
Floodprone Width (ft)	>200	>200	>200	>200	>200	>200	>200		N/A	N/A	N/A	N/A	N/A	N/A	N/A		>200	>200	>200	>200	>200	>200	>200		N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Bankfull Mean Depth (ft)	0.6	0.7	0.8	0.8	0.7	0.7	0.7		0.7	0.8	0.8	0.8	0.9	1.0	0.9		0.9	0.8	0.8	0.7	0.8	0.8	0.7		1.0	0.8	0.9	0.8	0.7	0.9	0.8	
Bankfull Max Depth (ft)	1.1	1.5	1.5	1.4	1.4	1.3	1.4		1.7	1.9	2.0	1.9	2.0	1.8	1.6		1.4	1.4	1.4	1.4	1.4	1.5	1.3		1.7	1.7	1.7	1.7	1.6	1.7	1.6	
Bankfull Cross Sectional Area (ft ²)	6.2	5.6	5.8	5.8	5.3	6.2	6.0		7.8	7.6	8.6	8.1	8.1	7.8	6.7		8.5	8.1	8.2	7.4	7.1	8.5	6.2		10.7	9.4	9.9	8.6	8.0	10.7	9.0	
Bankfull Width/Depth Ratio	14.8	10.4	10.1	10.0	11.5	13.2	13.6		14.6	13.4	12.2	12.0	10.6	8.4	7.7		10.6	12.3	12.2	13.5	12.1	11.8	12.4		11.4	13.9	13.1	15.1	15.6	13.0	14.4	
Entrenchment Ratio ¹	>20.9	>26.2	>26.1	>26.3	>25.7	>22.2	>22.1		N/A	N/A	N/A	N/A	N/A	N/A	N/A		>21.1	>20.0	>20.1	>20.0	>21.5	>20.0	>22.7		N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Bankfull Bank Height Ratio ²	1.0	1.0	1.0	1.0	1.0	<1.0	<1.0		N/A	N/A	N/A	N/A	N/A	N/A	N/A		1.0	1.0	1.0	1.0	1.0	<1.0	<1.0		N/A	N/A	N/A	N/A	N/A	N/A	N/A	
		•	Cro	ss Secti	ion 5 (P	ool)					Cross	Sectio	n 6 (Sh	allow)					Cro	ss Secti	ion 7 (P	ool)					Cross	Section	n 8 (Sha	illow)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	125.3	125.3	125.3	125.3	125.3	125.4	125.3		124.7	124.7	124.7	124.7	124.7	124.9	124.8		120.8	120.8	120.8	120.8	120.8	120.9	120.8		119.9	119.9	119.9	119.9	119.9	119.4	120.1	
Low Bank Elevation (ft)	125.3	125.3	125.3	125.3	125.3	125.3	125.3		124.7	124.7	124.7	124.7	124.7	124.9	124.8		120.8	120.8	120.8	120.8	120.8	120.8	120.8		119.9	119.9	119.9	119.9	119.9	119.9	120.1	
Bankfull Width (ft)	8.9	8.6	8.6	8.6	9.3	10.1	10.3		8.7	8.2	8.6	8.5	8.0	9.1	8.2		9.5	8.0	8.0	8.7	8.7	10.3	8.4		4.7	4.8	4.8	4.2	4.2	2.8	4.7	
Floodprone Width (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A		>200	>200	>200	>200	>200	>200	>200		N/A	N/A	N/A	N/A	N/A	N/A	N/A		>200	>200	>200	>200	>200	>200	>200	
Bankfull Mean Depth (ft)	0.8	0.8	0.8	0.7	0.7	0.7	0.7		0.7	0.7	0.6	0.6	0.5	0.7	0.6		0.8	0.9	0.9	0.8	0.8	0.7	0.7		0.4	0.7	1.2	0.8	1.0	0.8	0.9	
Bankfull Max Depth (ft)	1.5	1.5	1.5	1.5	1.4	1.4	1.4		1.1	1.2	1.2	1.1	1.0	1.2	1.0		1.6	1.7	1.7	1.7	1.8	1.8	1.5		1.3	1.3	1.7	1.2	1.7	1.0	1.5	
Bankfull Cross Sectional Area (ft ²)	7.5	7.0	6.8	6.2	6.5	7.5	7.0		6.0	5.3	5.6	5.2	4.3	6.0	4.6		7.6	7.4	7.3	7.0	7.0	7.6	5.9		2.1	3.3	5.7	3.3	4.4	2.1	4.0	
Bankfull Width/Depth Ratio	10.7	10.6	10.9	11.9	13.4	13.5	15.2		12.6	12.6	13.4	14.0	14.7	13.7	14.7		11.7	8.7	8.8	10.8	10.8	13.8	11.9		10.6	6.9	4.0	5.4	4.0	3.7	5.5	
Entrenchment Ratio ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A		>23.0	>24.4	>23.2	>23.5	>25.1	>22.1	>24.3		N/A	N/A	N/A	N/A	N/A	N/A	N/A		>42.5	>42.1	>41.9	>47.4	>47.4	>71.9	>42.3	
Bankfull Bank Height Ratio ²	N/A	N/A	N/A	N/A	N/A	N/A	N/A		1.0	1.0	1.0	1.0	1.0	<1.0	<1.0		N/A	N/A	N/A	N/A	N/A	N/A	N/A		1.0	1.0	1.0	1.0	1.0	2.0	1.5	
			Cross	Sectio	n 9 (Sha	allow)					Cros	s Secti	on 10 (Pool)																		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7																
Bankfull Elevation (ft)	116.4	116.4	116.4	116.4	116.4	116.3	116.4		116.1	116.1	116.1	116.1	116.1	116.1	116.1																	
Low Bank Elevation (ft)	116.4	116.4	116.4	116.4	116.4	116.4	116.4		116.1	116.1	116.1	116.1	116.1	116.1	116.1																	
Bankfull Width (ft)	7.7	7.5	7.5	7.5	7.5	7.9	8.8		6.8	5.9	5.9	6.2	6.0	7.9	7.0																	
Floodprone Width (ft)	>200	>200	>200	>200	>200	>200	>200		N/A	N/A	N/A	N/A	N/A	N/A	N/A																	
Bankfull Mean Depth (ft)	0.5	0.7	0.7	0.6	0.6	0.5	0.5		0.6	0.8	0.8	0.7	0.7	0.6	0.5																	
Bankfull Max Depth (ft)	0.7	1.0	1.0	1.1	1.0	0.9	1.0		0.9	1.0	1.0	1.0	0.9	0.9	0.8																	
Bankfull Cross Sectional Area (ft ²)	4.0	5.4	4.9	4.7	4.6	4.0	4.1		4.4	4.7	4.6	4.5	4.0	4.4	3.7]															
Bankfull Width/Depth Ratio	14.5	10.4	11.4	12.1	12.4	15.5	18.7		10.6	7.5	7.6	8.5	9.0	14.0	13.5																	
Entrenchment Ratio ¹	>26.1	>26.7	>26.7	>26.7	>26.7	>25.4	>22.8		N/A	N/A	N/A	N/A	N/A	N/A	N/A]															
Bankfull Bank Height Ratio ²	1.0	1.0	1.0	1.0	1.0	1.1	1.0		N/A	N/A	N/A	N/A	N/A	N/A	N/A]															

¹Entrenchment Ratio is the flood prone width divided by the bankfull width.

Table 11b. Morphology and Hydraulic Summary (Dimensional Parameters - Cross Section)

Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 6 - 2019

Devil's Racetrack (East)

			Cros	ss Sectio	on 11 (I	Pool)					Cross	Sectior	n 12 (Sh	allow)					Cros	ss Sectio	on 13 (P	Pool)						Section	14 (Sha	allow)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	115.4	115.4	115.4	115.4	115.4	115.5	115.2		115.1	115.1	115.1	115.1	115.1	115.3	115.2		115.0	115.0	115.0	115.0	115.0	115.3	114.9		114.6	114.6	114.6	114.6	114.6	114.9	114.6	
Low Bank Elevation (ft)	115.4	115.4	115.4	115.4	115.4	115.3	115.2		115.1	115.1	115.1	115.1	115.1	115.0	115.2		115.0	115.0	115.0	115.0	115.0	115.0	114.9		114.6	114.6	114.6	114.6	114.6	114.6	114.6	
Bankfull Width (ft)	15.0	15.1	15.1	15.1	15.1	14.0	14.6		12.2	12.5	12.3	12.2	12.2	12.7	12.7		19.8	20.5	20.8	21.1	21.8	22.2	20.8		12.7	11.8	12.4	12.2	12.0	12.6	11.9	
Floodprone Width (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A		>300	>300	>300	>300	>300	>300	>300		N/A	N/A	N/A	N/A	N/A	N/A	N/A		>300	>300	>300	>300	>300	>300	>300	
Bankfull Mean Depth (ft)	1.2	1.1	1.1	1.1	1.1	1.3	0.9		0.8	0.7	0.8	0.7	0.7	0.8	0.7		1.5	1.2	1.3	1.1	1.1	1.4	1.0		1.1	0.9	0.9	0.9	0.9	1.1	0.8	
Bankfull Max Depth (ft)	2.1	2.0	2.0	2.5	2.0	2.2	1.8		1.3	1.3	1.3	1.2	1.3	1.4	1.3		2.7	2.5	2.5	2.3	2.5	2.7	2.2		1.6	1.6	1.6	1.5	1.6	1.8	1.6	
Bankfull Cross Sectional Area (ft ²)	18.8	16.5	17.3	16.1	15.9	18.8	12.8		10.3	8.9	9.3	8.0	8.4	10.3	8.6		30.2	24.6	26.2	23.2	23.2	30.2	20.2		13.3	10.4	10.9	10.5	10.6	13.3	10.1	
Bankfull Width/Depth Ratio	12.0	13.8	13.1	14.2	14.3	10.4	16.7		14.6	17.6	16.1	18.6	17.6	15.7	18.8		13.0	17.1	16.6	19.2	20.5	16.3	21.4		12.1	13.4	14.0	14.1	13.7	11.9	14.0	
Entrenchment Ratio ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A		>24.5	>23.9	>24.5	>24.5	>24.6	>23.6	>23.6		N/A	N/A	N/A	N/A	N/A	N/A	N/A		>23.7	>25.4	>24.3	>24.6	>24.9	>23.8	>25.2	
Bankfull Bank Height Ratio ²	N/A	N/A	N/A	N/A	N/A	N/A	N/A		1.0	1.0	1.0	1.0	1.0	<1.0	<1.0		N/A	N/A	N/A	N/A	N/A	N/A	N/A		1.0	1.0	1.0	1.0	1.0	<1.0	<1.0	
			Cros	s Sectio	on 15 (I	Pool)					Cross	Sectior	16 (Sh	allow)					Cross	Section	17 (Sh	allow)					Cros	s Sectio	on 18 (P	ool)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	114.2	114.2	114.2	114.2	114.2	114.5	114.2		114.1	114.1	114.1	114.1	114.1	114.3	114.3		113.3	113.3	113.3	113.3	113.3	113.4	113.4		112.6	112.6	112.6	112.6	112.6	113.0	112.6	
Low Bank Elevation (ft)	114.2	114.2	114.2	114.2	114.2	114.1	114.2		114.1	114.1	114.1	114.1	114.1	114.4	114.3		113.3	113.3	113.3	113.3	113.3	113.3	113.4		112.6	112.6	112.6	112.6	112.6	112.5	112.6	
Bankfull Width (ft)	15.6	12.4	12.4	12.4	12.3	13.2	15.3		13.4	12.6	12.7	12.4	12.4	13.8	14.6		13.7	12.5	12.7	12.7	13.6	13.5	14.2		15.5	15.3	15.3	15.3	15.3	17.1	15.3	
Floodprone Width (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A		>300	>300	>300	>300	>300	>300	>300		>300	>300	>300	>300	>300	>300	>300		N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Bankfull Mean Depth (ft)	1.1	1.2	1.2	1.1	1.1	1.3	0.9		1.0	1.0	1.0	0.9	0.9	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.6	1.5	1.4	1.2	1.1	1.5	1.1	
Bankfull Max Depth (ft)	2.1	1.9	1.9	1.8	1.8	2.1	1.9		1.7	1.8	1.7	1.7	1.7	1.8	1.8		1.7	1.7	1.7	2.1	2.1	2.1	2.0		2.8	2.7	2.6	2.1	2.0	2.6	2.1	
Bankfull Cross Sectional Area (ft ²)	17.3	14.5	14.3	13.5	13.3	17.3	13.4		13.2	12.0	12.3	11.5	11.3	13.2	14.0		13.9	12.5	12.7	13.2	13.4	13.9	14.1		25.0	22.4	21.0	18.8	16.6		17.5	
Bankfull Width/Depth Ratio	14.0	10.6	10.7	11.4	11.4	10.1	17.3		13.6	13.2	13.0	13.4	13.5	14.3	15.3		13.4	12.5	12.6	12.2	13.8	13.1	14.3		9.5	10.5	11.2	12.4	14.1	11.8	13.5	
Entrenchment Ratio ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A		>22.3	>23.9	>23.6	>24.1	>24.3	>21.8	>20.5		>21.9	>24.0	>23.6	>23.7	>22.1	>22.2	>21.1		N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Bankfull Bank Height Ratio ²	N/A	N/A	N/A	N/A	N/A	N/A	N/A		1.0	1.0	1.0	1.0	1.0	1.1	1.0		1.0	1.0	1.0	1.0	1.0	<1.0	1.0		N/A	N/A	N/A	N/A	N/A	N/A	N/A	
		•	Cross-	Section	n 19 (Sh	allow)					Cross	Sectior	1 20 (Sh	allow)				-	Cros	s Sectio	on 21 (P	Pool)										
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7								
Bankfull Elevation (ft)	112.7	112.7	112.7	112.7	112.7	112.9	112.8		109.0	109.0	109.0	109.0	109.0	108.9	109.0		108.1	108.1	108.1	108.1	108.1	108.3	108.1									
Low Bank Elevation (ft)	112.7	112.7	112.7	112.7	112.7	112.8	112.8		109.0	109.0	109.0	109.0	109.0	109.2	109.0		108.1	108.1	108.1	108.1	108.1	108.2	108.1									
Bankfull Width (ft)	13.3	14.3	14.2	12.6	14.0	14.1	13.9		8.2	7.9	7.9	8.3	8.2	8.1	7.7		8.8	8.9	9.1	7.8	7.8	9.0	8.2									
Floodprone Width (ft)	>300	>300	>300	>300	>300	>300	>300		>300	>300	>300	>300	>300	>300	>300		N/A	N/A	N/A	N/A	N/A	N/A	N/A									
Bankfull Mean Depth (ft)	0.9	0.8	0.8	0.8	0.7	0.9	0.7		0.7	0.7	0.8	0.8	0.8	0.7	0.8		1.2	1.1	1.3	1.2	1.4	1.2	1.1									
Bankfull Max Depth (ft)	1.6	1.6	1.6	1.6	1.4	1.7	1.5		1.1	1.1	1.2	1.2	1.2	1.2	1.3		2.0	1.9	2.1	2.1	2.0	2.0	1.7									
Bankfull Cross Sectional Area (ft ²)	12.5	11.2	11.9	9.9	9.6	12.5	9.2		5.7	5.9	6.1	6.3	6.3	5.7	6.3		10.8	9.7	11.5	9.4	10.6	10.8	8.8									
Bankfull Width/Depth Ratio	14.1	18.4	17.1	16.1	20.4	15.9	20.8		11.9	10.6	10.3	10.9	10.6	11.4	9.4		7.3	8.1	7.2	6.5	5.7	7.6	7.7									
Entrenchment Ratio ¹	>22.6	>20.9	>21.1	>23.8	>21.5	>21.3	>21.6		>36.5	>37.8	>37.8	>36.3	>36.6	>37.2	>39.1		N/A	N/A	N/A	N/A	N/A	N/A	N/A]							
Bankfull Bank Height Ratio ²	1.0	1.0	1.0	1.0	1.0	<1.0	<1.0		1.0	1.0	1.0	1.0	1.0	1.2	1.1		N/A	N/A	N/A	N/A	N/A	N/A	N/A]							

¹Entrenchment Ratio is the flood prone width divided by the bankfull width.

 $^{2}\mathsf{Bank}$ Height Ratio is the bank height divided by the max depth of the bankfull channel.

Table 11c. Morphology and Hydraulic Summary (Dimensional Parameters - Cross Section) Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

Southeast Branch

			Cros	s Sectio	on 28 (P	ool)					Cross	Section	29 (Sh	allow)					Cros	ss Sectio	on 30 (P	ool)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	137.7	137.7	137.7	137.7	137.7	137.7	137.8		137.1	137.1	137.1	137.1	137.1	137.2	137.3		122.8	122.8	122.8	122.8	122.8	123.0	123.0	
Low Bank Elevation (ft)	137.7	137.7	137.7	137.7	137.7	137.8	137.8		137.1	137.1	137.1	137.1	137.1	137.2	137.3		122.8	122.8	122.8	122.8	122.8	123.0	123.0	
Bankfull Width (ft)	3.8	3.3	3.3	3.2	3.3	3.6	3.4		3.0	2.9	2.6	2.8	2.4	2.6	2.9		3.8	4.1	3.5	3.5	3.0	4.1	3.9	
Floodprone Width (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A		>30	>30	>30	>30	>30	>30	>30		N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Bankfull Mean Depth (ft)	0.4	0.5	0.5	0.5	0.4	0.4	0.5		0.3	0.4	0.3	0.3	0.3	0.3	0.3		0.3	0.4	0.3	0.3	0.2	0.3	0.3	
Bankfull Max Depth (ft)	0.8	1.2	1.2	1.1	1.1	1.1	1.2		0.5	0.7	0.7	0.7	0.7	0.7	0.7		0.4	0.7	0.5	0.4	0.4	0.5	0.5	
Bankfull Cross Sectional Area (ft ²)	1.5	1.7	1.6	1.5	1.5	1.5	1.7		0.8	1.1	0.8	0.9	0.7	0.8	0.9		1.3	1.7	1.1	0.9	0.7	1.3	1.3	
Bankfull Width/Depth Ratio	9.3	6.6	7.1	7.2	7.3	8.8	6.7		11.4	7.7	8.3	8.2	7.9	8.6	9.0		11.2	9.4	11.7	13.5	12.7	12.9	11.5	
Entrenchment Ratio ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A		>9.9	>10.4	>11.4	>10.9	>12.5	>11.5	>30.0		N/A	N/A	N/A	N/A	N/A	N/A	N/A	ł
Bankfull Bank Height Ratio ²	N/A	N/A	N/A	N/A	N/A	N/A	N/A		1.0	1.0	1.0	1.0	1.0	1.1	1.1		N/A	N/A	N/A	N/A	N/A	N/A	N/A	
			Cross	Section	31 (Sha	allow)					Cross	Section	32 (Sh	allow)					Cros	s Sectio	on 33 (P	ool)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	122.7	122.7	122.7	122.7	122.7	122.9	122.9		116.5	116.5	116.5	116.5	116.5	116.8	116.8		116.4	116.4	116.4	116.4	116.4	116.7	116.6	
Low Bank Elevation (ft)	122.7	122.7	122.7	122.7	122.7	122.8	122.9		116.5	116.5	116.5	116.5	116.5	116.6	116.8		116.4	116.4	116.4	116.4	116.4	116.5	116.6	
Bankfull Width (ft)	3.8	3.9	3.8	2.7	2.4	3.6	3.5		5.3	5.1	3.9	3.5	3.5	8.5	4.6		6.3	5.8	5.0	3.6	3.7	4.9	5.1	
Floodprone Width (ft)	>60	>60	>60	>60	>60	>60	>60		>200	>200	>200	>200	>200	>200	>200		N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Bankfull Mean Depth (ft)	0.4	0.5	0.3	0.3	0.3	0.4	0.4		0.4	0.4	0.3	0.3	0.3	0.2	0.4		0.4	0.3	0.4	0.3	0.3	0.5	0.3	
Bankfull Max Depth (ft)	0.5	0.8	0.5	0.6	0.5	0.7	0.7		0.6	0.5	0.5	0.5	0.4	0.7	0.6		0.8	0.6	0.6	0.5	0.4	0.7	0.6	
Bankfull Cross Sectional Area (ft ²)	1.3	2.0	1.3	0.9	0.7	1.3	1.4		2.1	1.8	1.2	1.0	0.9	2.1	1.6	-	2.4	1.7	1.8	1.1	0.9	2.4	1.6	
Bankfull Width/Depth Ratio	10.8	7.8	11.2	8.3	7.9	10.0	8.9		13.8	14.6	13.0	12.5	13.7	34.4	12.9		16.8	19.7	13.7	11.6	14.7	10.0	16.2	
Entrenchment Ratio ¹	>15.8	>15.4	>15.8	>22.4	>24.9	>16.7	>17.2		>37.5	>38.9	>51.3	>57.9	>56.4	>23.5	>43.5		N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Bankfull Bank Height Ratio ²	1.0	1.0	1.0	1.0	1.0	<1.0	1.0		1.0	1.0	1.0	1.0	1.0	<1.0	<1.0		N/A	N/A	N/A	N/A	N/A	N/A	N/A	1

¹Entrenchment Ratio is the flood prone width divided by the bankfull width.

Table 11d. Morphology and Hydraulic Summary (Dimensional Parameters - Cross Section) Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

Middle Branch

			Cross	Section	1 24 (Sha	allow)					Cros	s Sectio	on 25 (P	ool)					Cros	ss Sectio	on 26 (P	ool)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	136.4	136.4	136.4	136.4	136.4	136.6	136.7		136.4	136.4	136.4	136.4	136.4	136.4	136.5		124.7	124.7	124.7	124.7	124.7	124.7	124.9	
Low Bank Elevation (ft)	136.4	136.4	136.4	136.4	136.4	136.5	136.7		136.4	136.4	136.4	136.4	136.4	136.4	136.5		124.7	124.7	124.7	124.7	124.7	124.8	124.9	
Bankfull Width (ft)	2.2	2.3	2.2	1.3	1.2	1.6	2.1		3.1	3.1	3.2	3.0	2.7	2.5	2.3		4.1	4.8	5.0	5.2	4.4	5.0	4.2	
Floodprone Width (ft)	>50	>50	>50	>50	>50	>50	>50		N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Bankfull Mean Depth (ft)	0.3	0.3	0.3	0.3	0.3	0.4	0.4		0.4	0.5	0.3	0.4	0.5	0.5	0.8		0.3	0.2	0.2	0.3	0.2	0.3	0.3	
Bankfull Max Depth (ft)	0.5	0.6	0.6	0.4	0.5	0.6	0.7		0.7	0.9	0.6	0.8	0.8	0.8	1.1		0.9	0.5	0.5	0.6	0.5	0.6	0.6	
Bankfull Cross Sectional Area (ft ²)	0.7	0.8	0.7	0.4	0.4	0.7	0.8		1.2	1.6	1.1	1.2	1.2	1.2	1.8		1.4	1.0	1.0	1.5	1.0	1.4	1.3	
Bankfull Width/Depth Ratio	6.7	6.8	6.8	4.0	3.5	3.7	5.4		8.1	6.0	9.1	7.6	5.8	5.1	2.9		11.9	21.9	24.3	17.7	19.7	17.6	13.8	
Entrenchment Ratio ¹	>22.9	>21.5	>23.2	>38.4	>42.9	>31.3	>23.8		N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Bankfull Bank Height Ratio ²	1.0	1.0	1.0	1.0	1.0	<1.0	1.1		N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A	
			Cross	Section	1 27 (Sha	allow)																		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7																
Bankfull Elevation (ft)	124.6	124.6	124.6	124.6	124.6	124.7	124.8																	
Low Bank Elevation (ft)	124.6	124.6	124.6	124.6	124.6	124.6	124.8																	
Bankfull Width (ft)	3.4	3.2	3.1	3.5	2.9	3.3	3.3																	
Floodprone Width (ft)	>200	>200	>200	>200	>200	>200	>200																	
Bankfull Mean Depth (ft)	0.3	0.3	0.3	0.4	0.3	0.3	0.4																	
Bankfull Max Depth (ft)	0.5	0.6	0.6	0.7	0.6	0.6	0.7																	
Bankfull Cross Sectional Area (ft ²)	1.1	1.0	1.0	1.3	0.9	1.1	1.3																	
Bankfull Width/Depth Ratio	10.1	10.7	10.2	9.5	8.7	9.9	8.1																	
Entrenchment Ratio ¹	>58.8	>62.5	>64.3	>57.5	>69.8	>60.6	>61.3																	
Bankfull Bank Height Ratio ²	1.0	1.0	1.0	1.0	1.0	<1.0	1.1																	

¹Entrenchment Ratio is the flood prone width divided by the bankfull width.

Table 11e. Morphology and Hydraulic Summary (Dimensional Parameters - Cross Section) Devil's Racetrack Mitigation Site (DMS Project No. 95021)

Monitoring Year 6 - 2019

Southwest Branch

			Cros	s Sectio	on 22 (P	ool)					Cross	Section	23 (Sha	allow)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	136.4	136.4	136.4	136.4	136.4	136.3	136.4		136.4	136.4	136.4	136.4	136.4	136.5	136.7	
Low Bank Elevation (ft)	136.4	136.4	136.4	136.4	136.4	136.4	136.4		136.4	136.4	136.4	136.4	136.4	136.6	136.7	
Bankfull Width (ft)	4.9	4.8	5.0	4.5	4.2	4.2	3.6		2.4	2.9	3.0	2.5	1.8	2.0	3.5	
Floodprone Width (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A		>200	>200	>200	>200	>200	>200	>200	
Bankfull Mean Depth (ft)	0.4	0.4	0.4	0.3	0.3	0.4	0.5		0.3	0.3	0.3	0.3	0.2	0.3	0.4	
Bankfull Max Depth (ft)	0.8	1.0	0.9	0.7	0.6	0.7	0.7		0.4	0.4	0.5	0.4	0.3	0.4	0.6	
Bankfull Cross Sectional Area (ft ²)	1.8	1.9	2.1	1.5	1.3	1.8	1.7		0.6	0.8	0.9	0.7	0.3	0.6	1.3	
Bankfull Width/Depth Ratio	13.2	11.9	11.7	13.7	13.2	9.6	7.3		9.7	11.2	10.1	8.9	12.0	6.8	9.8	
Entrenchment Ratio ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A		>82.3	>68.6	>67.5	>79.4	>108.7	>98.8	>57.1	
Bankfull Bank Height Ratio ²	N/A	N/A	N/A	N/A	N/A	N/A	N/A		1.0	1.0	1.0	1.0	1.0	1.3	1.5	

¹Entrenchment Ratio is the flood prone width divided by the bankfull width.

Table 11f. Morphology and Hydraulic Summary (Dimensional Parameters - Cross Section) Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

North Branch

			Cros	ss Sectio	on 34 (P	ool)					Cross	Section	i 35 (Sha	allow)					Cross	Section	1 36 (Sha	allow)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft)	118.6	118.6	118.6	118.6	118.6	118.7	118.7		118.7	118.7	118.7	118.7	118.7	118.8	118.7		116.8	116.8	116.8	116.8	116.8	116.7	116.7	
Low Bank Elevation (ft)	118.6	118.6	118.6	118.6	118.6	118.7	118.7		118.7	118.7	118.7	118.7	118.7	118.7	188.7		116.8	116.8	116.8	116.8	116.8	116.7	116.7	
Bankfull Width (ft)	9.8	10.0	10.2	9.7	9.5	10.1	10.0		8.6	9.2	9.2	9.2	8.9	9.6	8.7		9.3	9.0	9.0	9.0	9.0	9.0	9.0	
Floodprone Width (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A		>200	>200	>200	>200	>200	>200	>200		>200	>200	>200	>200	>200	>200	>200	
Bankfull Mean Depth (ft)	0.8	0.7	0.7	0.7	0.7	0.7	0.6		0.7	0.7	0.7	0.6	0.6	0.6	0.6		0.7	0.8	0.8	0.8	0.7	0.7	0.7	L
Bankfull Max Depth (ft)	1.3	1.4	1.4	1.3	1.4	1.4	1.3		1.0	1.2	1.2	1.1	1.1	1.2	1.1		1.2	1.4	1.4	1.4	1.3	1.3	1.3	
Bankfull Cross Sectional Area (ft ²)	7.5	7.2	7.5	6.7	6.9	7.5	6.5		5.7	6.0	6.4	5.4	5.1	5.7	5.0		6.5	7.0	6.9	6.9	6.7	6.5	6.6	
Bankfull Width/Depth Ratio	12.8	14.0	13.9	14.0	12.9	13.5	15.3		13.1	14.1	13.2	15.6	15.4	16.3	15.3		13.2	11.5	11.7	11.8	12.0	12.5	12.3	
Entrenchment Ratio ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A		>23.2	>21.7	>21.7	>21.7	>22.5	>20.8	>22.9		>21.6	>22.2	>22.2	>22.2	>22.2	>22.2	>22.2	1
Bankfull Bank Height Ratio ²	N/A	N/A	N/A	N/A	N/A	N/A	N/A		1.0	1.0	1.0	1.0	1.0	<1.0	<1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	
			Cros	ss Sectio	on 37 (P	ool)																		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7																
Bankfull Elevation (ft)	116.5	116.5	116.5	116.5	116.5	116.6	116.5																	
Low Bank Elevation (ft)	116.5	116.5	116.5	116.5	116.5	116.6	116.5																	
Bankfull Width (ft)	10.6	11.1	10.7	11.1	11.7	11.6	11.8																	
Floodprone Width (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A																	
Bankfull Mean Depth (ft)	0.9	0.8	0.9	0.8	0.8	0.8	0.7																	
Bankfull Max Depth (ft)	1.4	1.4	1.5	1.4	1.4	1.4	1.3																	
Bankfull Cross Sectional Area (ft ²)	9.2	9.2	9.2	8.9	8.9	9.2	8.5																	
Bankfull Width/Depth Ratio	12.3	13.4	12.5	13.8	15.4	14.7	16.3																	
Entrenchment Ratio ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A																	
Bankfull Bank Height Ratio ²	N/A	N/A	N/A	N/A	N/A	N/A	N/A																	

¹Entrenchment Ratio is the flood prone width divided by the bankfull width.

Table 12a. Monitoring Data - Stream Reach Data Summary Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

Devil's Racetrack (West)

Parameter	As-Built	/Baseline	M	IY1	N	IY2	N	1Y3	N	1Y4	N	1Y5	N	1Y6	N	1Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Shallow		•		•		•		•		•				•		•
Bankfull Width (ft)	4.7	9.6	4.8	10.0	4.8	10.0	4.2	10.0	4.2	9.3	2.8	10.0	4.7	9.0		
Floodprone Width (ft)	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200		
Bankfull Mean Depth	0.4	0.9	0.7	0.8	0.6	1.2	0.6	0.8	0.5	1.0	0.5	0.8	0.5	0.9		
Bankfull Max Depth	0.7	1.4	1.0	1.5	1.0	1.7	1.1	1.4	1.0	1.7	0.9	1.5	1.0	1.5		
Bankfull Cross Sectional Area (ft ²)	2.1	8.5	3.3	8.1	4.9	8.2	3.3	7.4	4.3	7.1	2.1	8.5	4.0	6.2		
Width/Depth Ratio	10.6	14.8	6.9	12.6	4.0	13.4	4.7	14.0	4.0	14.7	3.7	15.5	5.5	18.7		
Entrenchment Ratio	>20.9	>42.5	>20	>42.1	>20.1	>41.9	>20.0	>47.4	>21.5	>47.4	>20.0	>71.9	>22.1	>42.3		
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	<1.0	2.0	<1.0	1.5		
D50 (mm)																
Profile																
Shallow Length (ft)																
Shallow Slope (ft/ft)																
Pool Length (ft)																
Pool Max Depth (ft)																
Pool Spacing (ft)																
Pool Volume (ft ³)																
Pattern		•		•												•
Channel Beltwidth (ft)																
Radius of Curvature (ft)																
Rc:Bankfull Width (ft/ft)																
Meander Wave Length (ft)																
Meander Width Ratio																
Additional Reach Parameters																
Rosgen Classification																
Channel Thalweg Length (ft)																
Sinuosity (ft)																
Water Surface Slope (ft/ft)																
Bankfull Slope (ft/ft)																
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100																
% of Reach with Eroding Banks			C	1%	()%	C)%	C)%	0)%	(0%	Ì	

Table 12b. Monitoring Data - Stream Reach Data Summary Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

Devil's Racetrack (East)

As-Built/Baseline				MY2		MY3		MY4		MY5		MY6		MY7	
Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
8.2	13.7	7.9	14.3	7.9	14.2	8.3	12.7	8.2	14.0	8.1	14.1	7.7	14.6		
>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300	>300		
0.7	1.1	0.7	1.0	0.8	1.0	0.7	1.0	0.7	1.0	0.7	1.1	0.7	1.1		
1.1	1.7	1.1	1.8	1.2	1.7	1.2	2.1	1.2	2.1	1.2	2.1	1.3	2.0		
5.7	14.1	5.9	12.5	6.1	12.7	6.3	13.2	6.3	13.4	5.7	13.9	6.3	14.1		
11.9	14.6	10.6	18.4	10.3	17.1	10.9	18.6	10.6	20.4	11.4	15.9	9.4	18.8		
>21.9	>36.5	>20.9	>37.8	>21.1	>37.8	>23.7	>36.3	>21.5	>36.6	>21.3	>37.2	>20.5	>39.1		
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	<1.0	1.2	<1.0	1.0		
		()%	0	%	C	1%	()%	0%		0%			
	Min 8.2 >300 0.7 1.1 5.7 11.9 >21.9	Min Max 8.2 13.7 >300 >300 0.7 1.1 1.1 1.7 5.7 14.1 11.9 14.6 >21.9 >36.5	Min Max Min 8.2 13.7 7.9 >300 >300 >300 0.7 1.1 0.7 1.1 1.7 1.1 5.7 14.1 5.9 11.9 14.6 10.6 >21.9 >36.5 >20.9 1.0 1.0 1.0	Min Max Min Max 8.2 13.7 7.9 14.3 >300 >300 >300 >300 0.7 1.1 0.7 1.0 1.1 1.7 1.1 1.8 5.7 14.1 5.9 12.5 11.9 14.6 10.6 18.4 >21.9 >36.5 >20.9 >37.8	Min Max Min Max Min 8.2 13.7 7.9 14.3 7.9 >300 >300 >300 >300 >300 0.7 1.1 0.7 1.0 0.8 1.1 1.7 1.1 1.8 1.2 5.7 14.1 5.9 12.5 6.1 11.9 14.6 10.6 18.4 10.3 >21.9 >36.5 >20.9 >37.8 >21.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Min Max Min Max Min Max 8.2 13.7 7.9 14.3 7.9 14.2 >300 >300 >300 >300 >300 >300 0.7 1.1 0.7 1.0 0.8 1.0 1.1 1.7 1.1 1.8 1.2 1.7 5.7 14.1 5.9 12.5 6.1 12.7 11.9 14.6 10.6 18.4 10.3 17.1 >21.9 >36.5 >20.9 >37.8 >21.1 >37.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Min Max Min Max Min Max Min 8.2 13.7 7.9 14.3 7.9 14.2 8.3 >300 >300 >300 >300 >300 >300 >300 0.7 1.1 0.7 1.0 0.8 1.0 0.7 1.1 1.7 1.1 1.8 1.2 1.7 1.2 5.7 14.1 5.9 12.5 6.1 12.7 6.3 11.9 14.6 10.6 18.4 10.3 17.1 10.9 >21.9 >36.5 >20.9 >37.8 >21.1 >37.8 >23.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <	Min Max Min Max Min Max Min Max 8.2 13.7 7.9 14.3 7.9 14.2 8.3 12.7 >300	MinMaxMinMaxMinMaxMinMaxMin***********************************	Min Max 8.2 13.7 7.9 14.3 7.9 14.2 8.3 12.7 8.2 14.0 >300 300 300 300	MinMaxMinMaxMinMaxMinMaxMinMaxMinMaxMin8.213.77.914.37.914.28.312.78.214.08.1>300>300>300>300>300>300>300>300>300>300>300>3000.71.10.71.00.81.00.71.00.71.00.71.11.11.81.21.71.22.11.22.11.25.714.15.91.2.56.112.76.313.26.313.45.711.914.610.61.8.410.317.110.918.610.620.411.4>21.9>36.5>20.9>37.8>21.1>37.8>23.7>36.3>21.5>36.6>21.31.01.01.01.01.01.01.01.01.01.01.0 <d>1.0<d><d><d><d><d><d><d><d><d><d><d><d><d< td=""><td>MinMaxMinMa</td><td>MinMaxMinMa</td><td>Mn<td>MaxMa</td></td></d<></d></d></d></d></d></d></d></d></d></d></d></d></d>	MinMaxMinMa	MinMaxMinMa	Mn <td>MaxMa</td>	MaxMa

Table 12c. Monitoring Data - Stream Reach Data Summary Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

Monitoring rear of 201

Southeast Branch

Parameter	As-Built	/Baseline	M	IY1	M	MY2 MY3			MY4		N	1Y5	MY6		MY7	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Shallow																
Bankfull Width (ft)	3.0	5.3	2.9	5.1	2.6	3.9	2.7	3.5	2.4	3.5	2.6	8.5	2.9	4.6		
Floodprone Width (ft)	>30	>200	>30	>200	>30	>200	>30	>200	>30	>200	>30	>200	>30	>200		
Bankfull Mean Depth	0.3	0.4	0.4	0.5	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.4	0.3	0.4		
Bankfull Max Depth	0.5	0.6	0.5	0.8	0.5	0.7	0.5	0.7	0.4	0.7	0.7	0.7	0.6	0.7		
Bankfull Cross Sectional Area (ft ²)	0.8	2.1	1.1	2.0	0.8	1.3	0.9	1.0	0.7	0.9	0.8	2.1	0.9	1.6		
Width/Depth Ratio	10.8	13.8	7.7	14.6	8.3	13.0	8.2	12.5	7.9	13.7	8.6	34.4	8.9	12.9		
Entrenchment Ratio	>9.9	>37.5	>10.4	>38.9	>11.4	>51.3	>10.9	>57.9	>12.5	>56.4	>11.5	>23.5	>17.2	>43.5		
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	<1.0	1.1	<1.0	1.1		
D50 (mm)																
Profile																
Shallow Length (ft)																
Shallow Slope (ft/ft)																
Pool Length (ft)																
Pool Max Depth (ft)																
Pool Spacing (ft)																
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)																
Radius of Curvature (ft)																
Rc:Bankfull Width (ft/ft)																
Meander Wave Length (ft)																
Meander Width Ratio																
Additional Reach Parameters																
Rosgen Classification																
Channel Thalweg Length (ft)																
Sinuosity (ft)																
Water Surface Slope (ft/ft)																
Bankfull Slope (ft/ft)																
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100																
% of Reach with Eroding Banks			1	0%	C)%	C	1%	()%	C)%	()%		

Table 12d. Monitoring Data - Stream Reach Data Summary Devil's Racetrack Mitigation Site (DMS Project No. 95021)

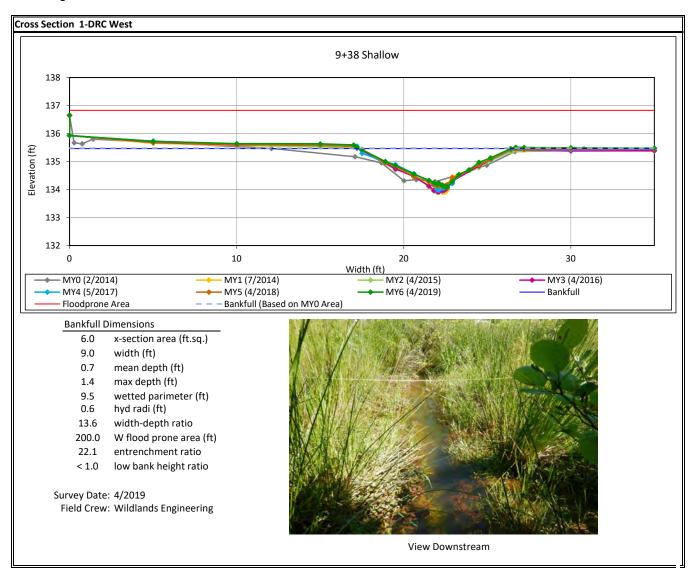
Monitoring Year 6 - 2019

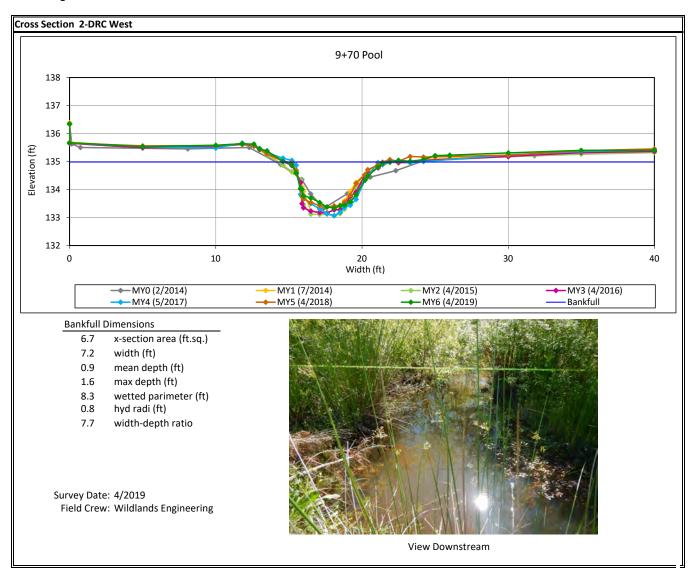
Middle Branch

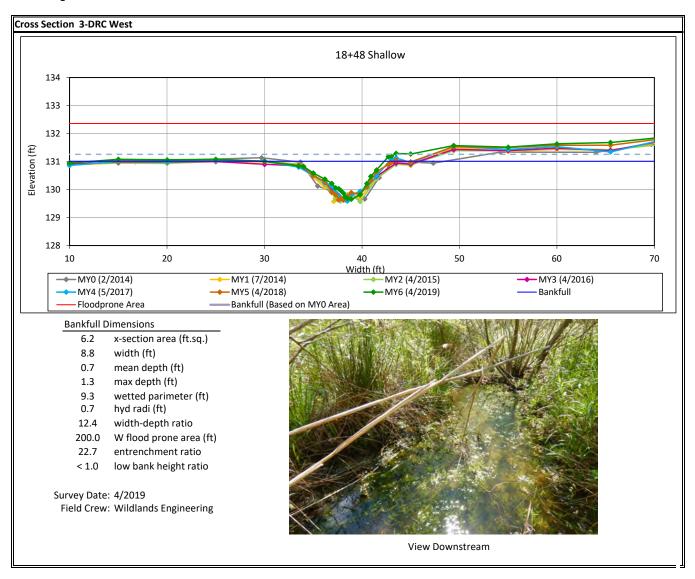
Parameter	As-Built,	/Baseline	seline MY1		MY2		N	1Y3	N	1¥4	MY5		MY6		MY7	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Shallow																
Bankfull Width (ft)	2.2	3.4	2.3	3.2	2.2	3.1	1.3	3.5	1.2	2.9	1.6	3.3	2.1	3.1		
Floodprone Width (ft)	>50	>200	>50	>200	>50	>200	>50	>200	>50	>200	>50	>200	>50	>200		
Bankfull Mean Depth	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.3	0.3	0.3	0.4	0.4	0.4		
Bankfull Max Depth	0.5	0.5	0.6	0.6	0.6	0.6	0.4	0.7	0.5	0.6	0.6	0.6	0.7	0.7		
Bankfull Cross Sectional Area (ft ²)	0.7	1.1	0.8	1.0	0.7	1.0	0.4	1.3	0.4	0.9	0.7	1.1	0.8	1.3		
Width/Depth Ratio	6.7	10.1	6.8	10.7	6.8	10.2	4.0	9.5	3.5	8.7	3.7	9.9	5.4	8.1		
Entrenchment Ratio	>22.9	>58.8	>21.5	>62.5	>23.2	>64.3	>38.4	>57.5	>42.9	>69.8	>31.3	>60.6	>23.8	>61.3		
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	<1.0	<1.0	1.1	1.1		
D50 (mm)																
Profile																
Shallow Length (ft)																
Shallow Slope (ft/ft)																
Pool Length (ft)																
Pool Max Depth (ft)																
Pool Spacing (ft)																
Pool Volume (ft ³)																
Pattern				•		•		•						1		
Channel Beltwidth (ft)																
Radius of Curvature (ft)																
Rc:Bankfull Width (ft/ft)																
Meander Wave Length (ft)																
Meander Width Ratio																
Additional Reach Parameters		•				•				•						
Rosgen Classification																
Channel Thalweg Length (ft)																
Sinuosity (ft)																
Water Surface Slope (ft/ft)			l l		1				l l				l l		l l	
Bankfull Slope (ft/ft)			l l		1				l l				l l		l l	
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%			l l		1				l l				l l		l l	
d16/d35/d50/d84/d95/d100																
% of Reach with Eroding Banks			()%	(0%	()%	0%		0%		0%			

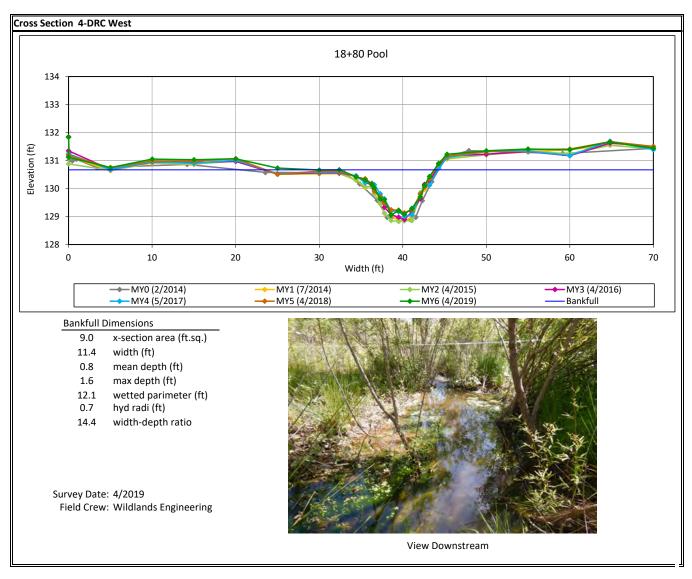
Table 12e. Monitoring Data - Stream Reach Data Summary Devil's Racetrack Mitigation Site (DMS Project No. 95021)

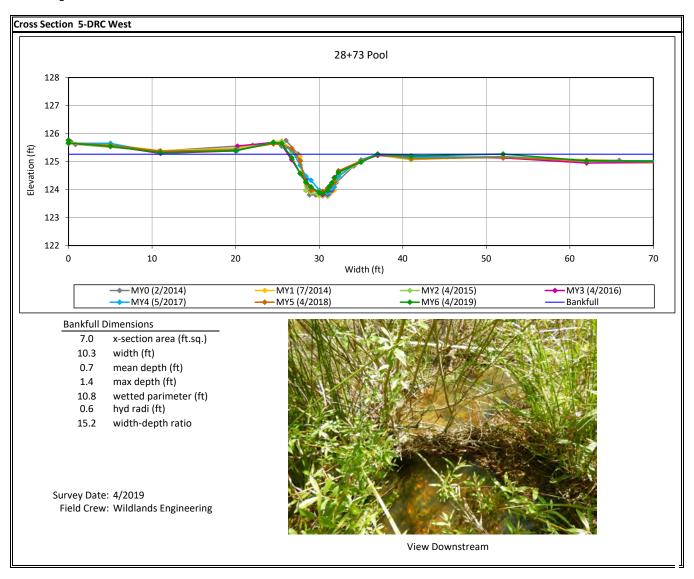
Monitoring Year 6 - 2019

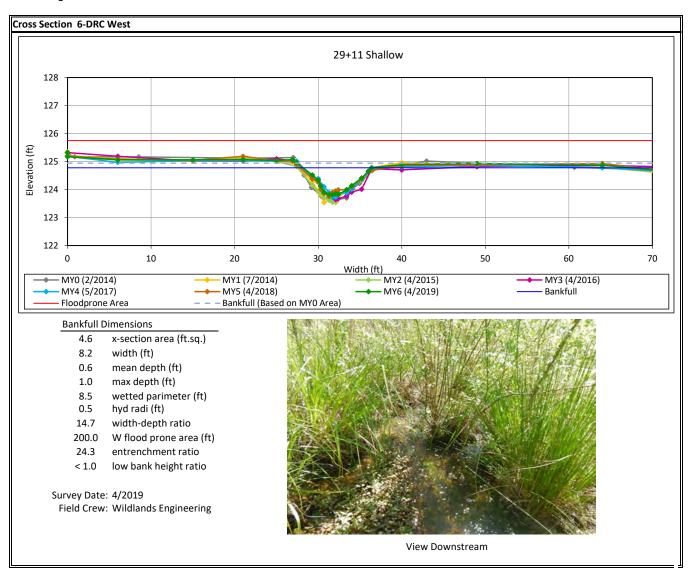

Southwest Branch

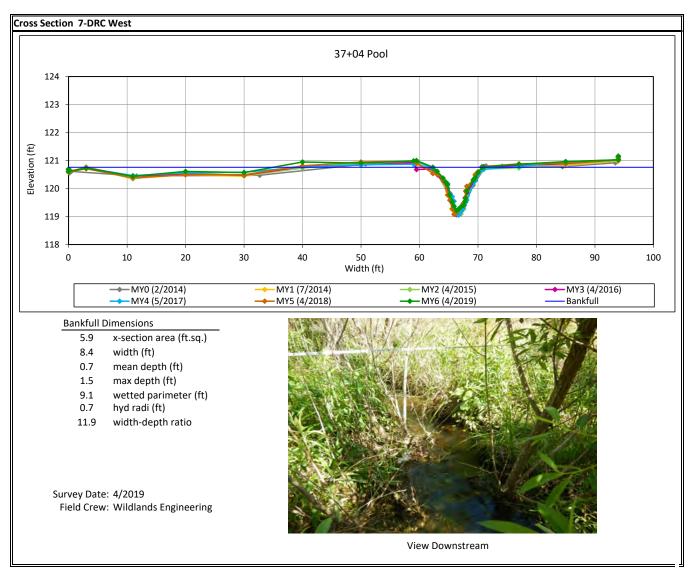

Parameter	As-Built/Baseline		MY1			MY2	N	/1Y3	N	1Y4	N	1Y5	MY6		N	AY7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Shallow		•						-				•				•
Bankfull Width (ft)	2	2.4		2.9		3.0		2.5		1.8		2.0		3.5		
Floodprone Width (ft)	>	200	>	200	2	>200		>200		>200		>200		>200		
Bankfull Mean Depth	().3		0.3		0.3		0.3		0.2		0.3		0.4		
Bankfull Max Depth	().4		0.4		0.5	0.4		0.3		0.4		0.6			
Bankfull Cross Sectional Area (ft ²)		0.6		0.8		0.9).7).3		0.6	1.3			
Width/Depth Ratio		9.7		11.2		10.1		8.9		2.0		5.8		9.8		
Entrenchment Ratio		32.3		68.6		>67.5		79.4		08.7		98.8		57.1		
Bank Height Ratio	1	1.0		1.0		1.0	1	1.0	1	L.O	1	1.3	1	5		
D50 (mm)																
Profile																
Shallow Length (ft)																
Shallow Slope (ft/ft)																
Pool Length (ft)																
Pool Max Depth (ft)																
Pool Spacing (ft)																
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)																
Radius of Curvature (ft)																
Rc:Bankfull Width (ft/ft)																
Meander Wave Length (ft)																
Meander Width Ratio																
Additional Reach Parameters																
Rosgen Classification																
Channel Thalweg Length (ft)																
Sinuosity (ft)																
Water Surface Slope (ft/ft)																
Bankfull Slope (ft/ft)																
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100																
% of Reach with Eroding Banks				0%		0%	(0%	()%	0%		0%			

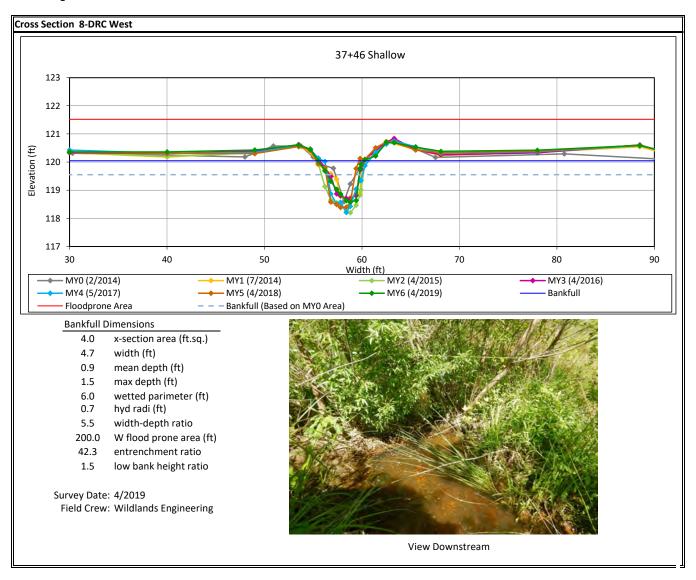

Table 12f. Monitoring Data - Stream Reach Data Summary Devil's Racetrack Mitigation Site (DMS Project No. 95021)

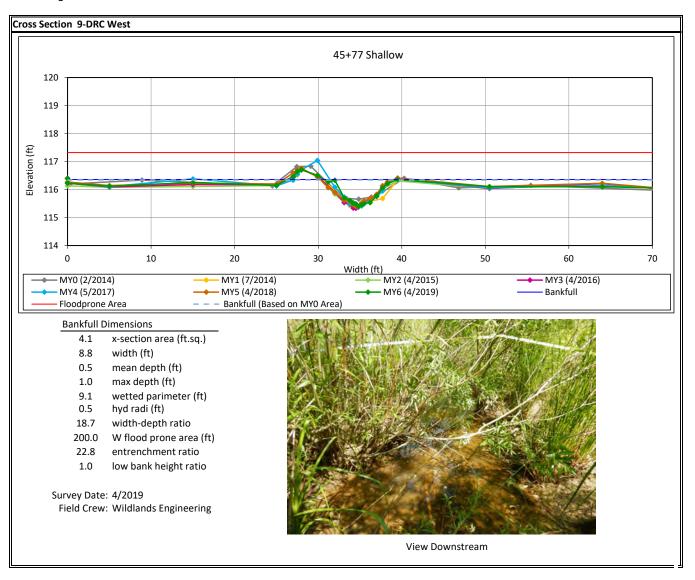

Monitoring Year 6 - 2019

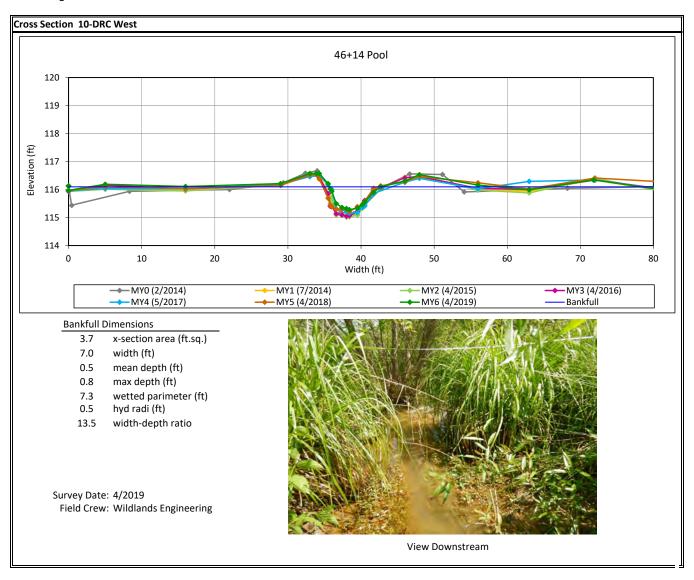

North Branch																
Parameter	As-Built	/Baseline	N	IY1	N	IY2	N	1Y3	M	IY4	N	1Y5	N	1Y6	N	1Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Shallow						•				•						
Bankfull Width (ft)	8.6	9.3	9.0	9.2	9.0	9.2	9.0	9.2	8.9	9.0	9.0	9.6	8.7	9.0		
Floodprone Width (ft)	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200		
Bankfull Mean Depth	0.7	0.7	0.7	0.8	0.7	0.8	0.6	0.8	0.6	0.7	0.6	0.7	0.6	0.7		
Bankfull Max Depth	1.0	1.2	1.2	1.4	1.2	1.4	1.1	1.4	1.1	1.3	1.2	1.3	1.1	1.3		
Bankfull Cross Sectional Area (ft ²)	5.7	6.5	6.0	7.0	6.4	6.9	5.4	6.9	5.1	6.7	5.7	6.5	5.0	6.6		
Width/Depth Ratio	13.1	13.2	11.5	14.1	11.7	13.2	11.8	15.6	12.0	15.4	12.5	16.3	12.3	15.3		
Entrenchment Ratio	>21.6	>23.2	>21.7	>22.2	>21.7	>22.2	>21.7	>22.2	>22.2	>22.5	>20.8	>22.2	>22.2	>22.9		
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	<1.0	1.0		
D50 (mm)																
Profile																
Shallow Length (ft)																
Shallow Slope (ft/ft)																
Pool Length (ft)																
Pool Max Depth (ft)																
Pool Spacing (ft)																
Pool Volume (ft ³)																
Pattern		•	1	•												•
Channel Beltwidth (ft)			1													
Radius of Curvature (ft)																
Rc:Bankfull Width (ft/ft)																
Meander Wave Length (ft)																
Meander Width Ratio																
Additional Reach Parameters																
Rosgen Classification												•		•		
Channel Thalweg Length (ft)																
Sinuosity (ft)																
Water Surface Slope (ft/ft)																
Bankfull Slope (ft/ft)																
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100																
% of Reach with Eroding Banks			()%	0)%	(0%	0	1%	C)%	()%		

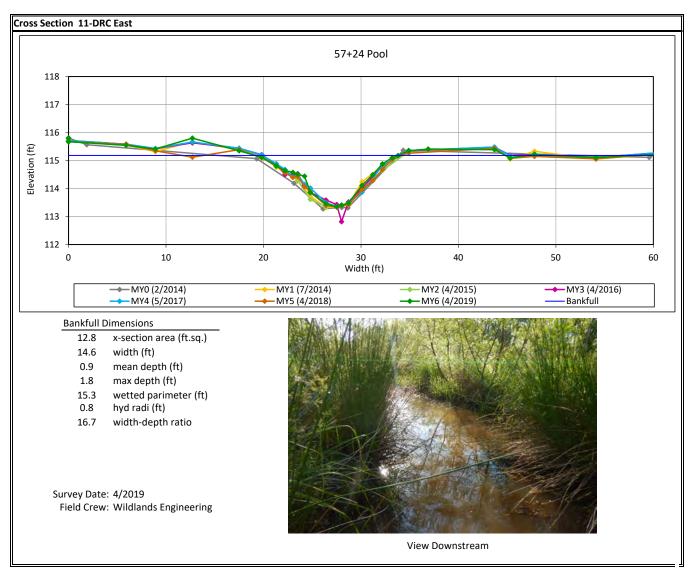


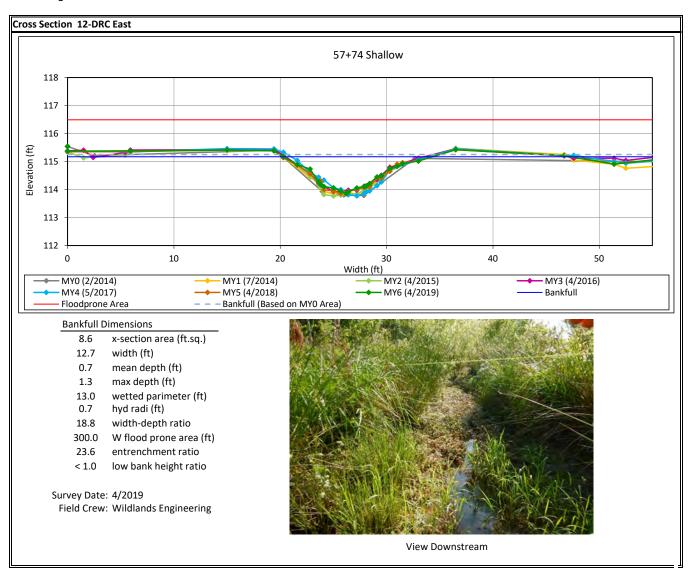


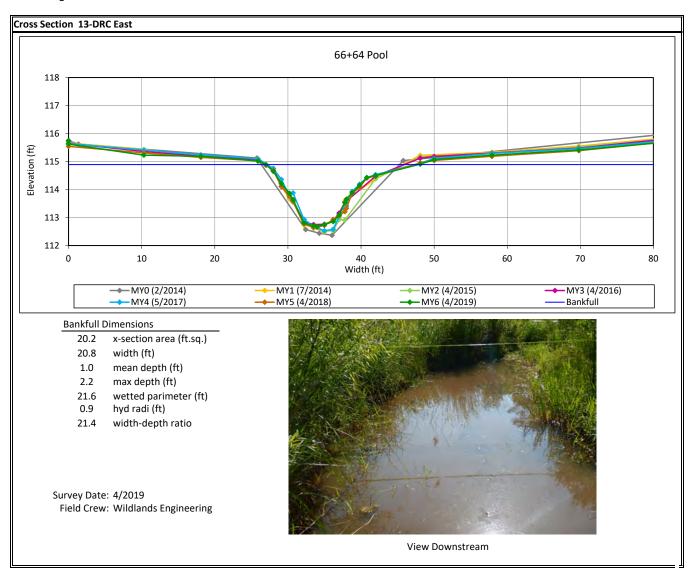


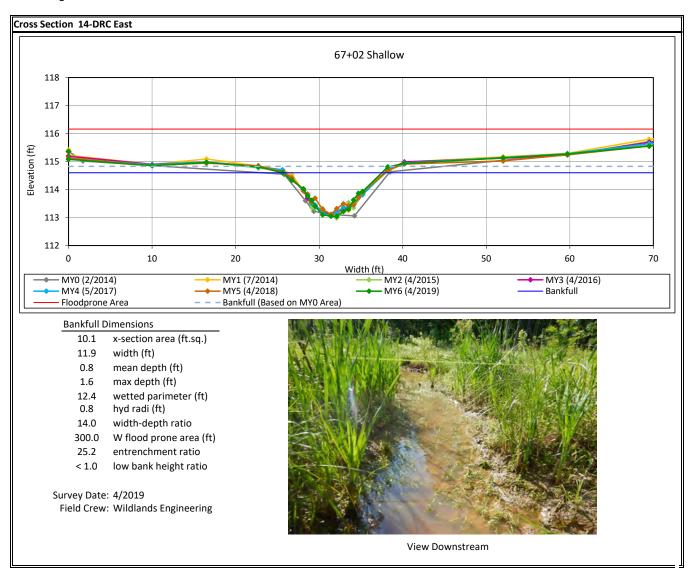


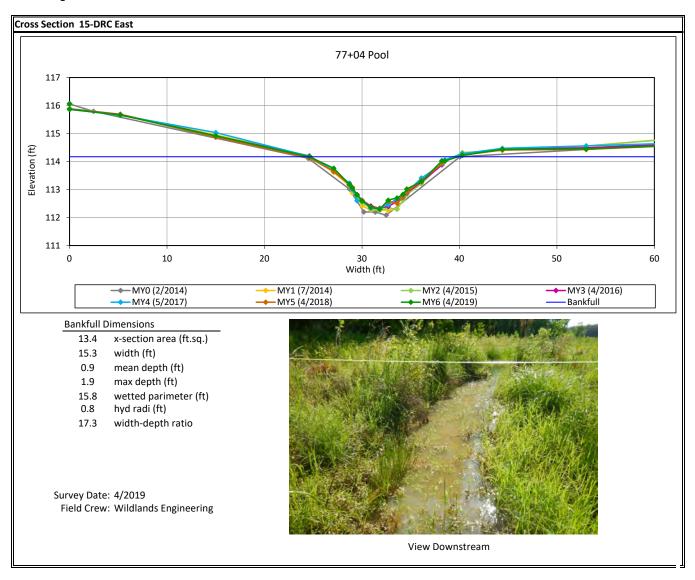


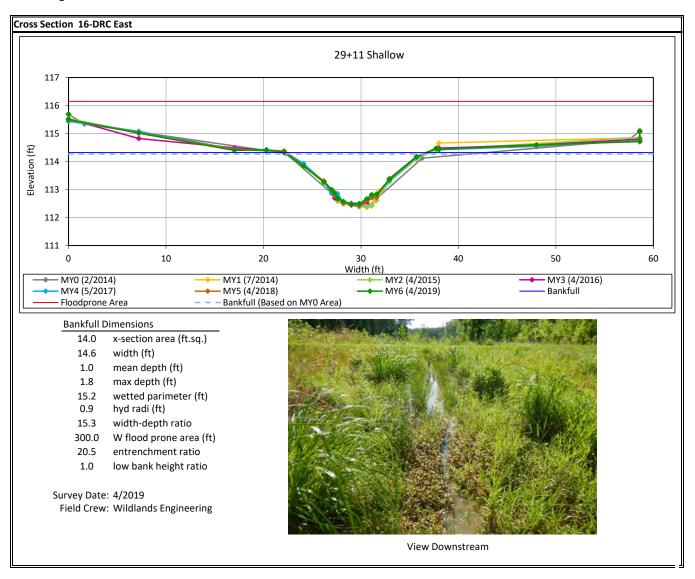




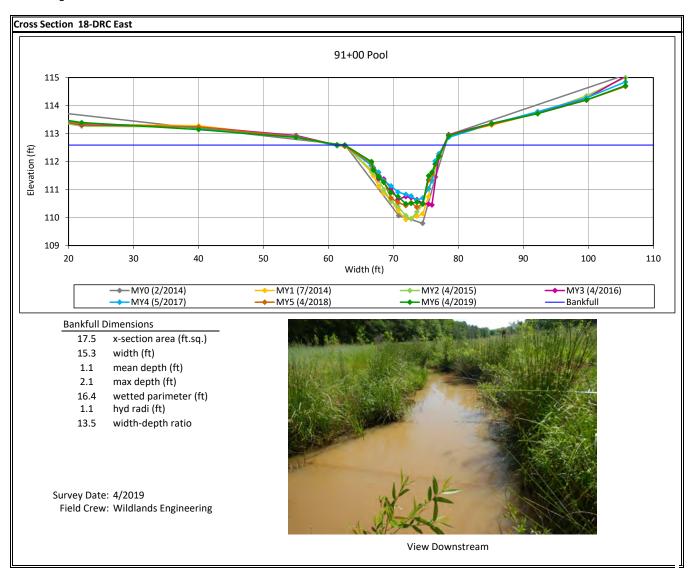


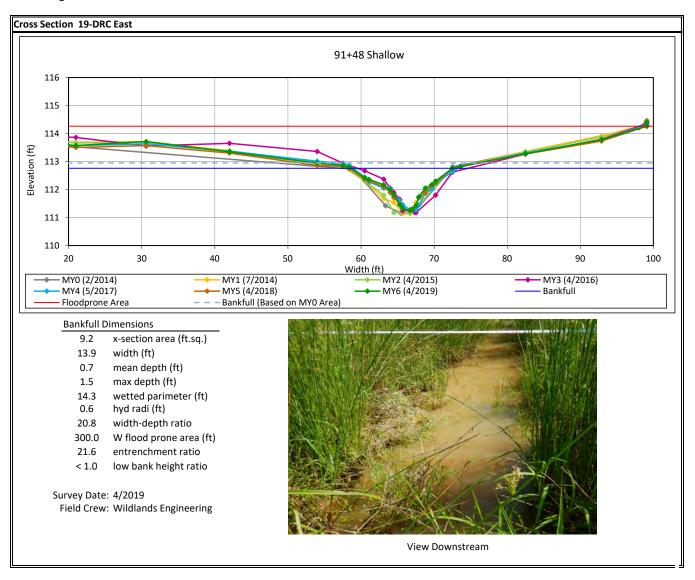


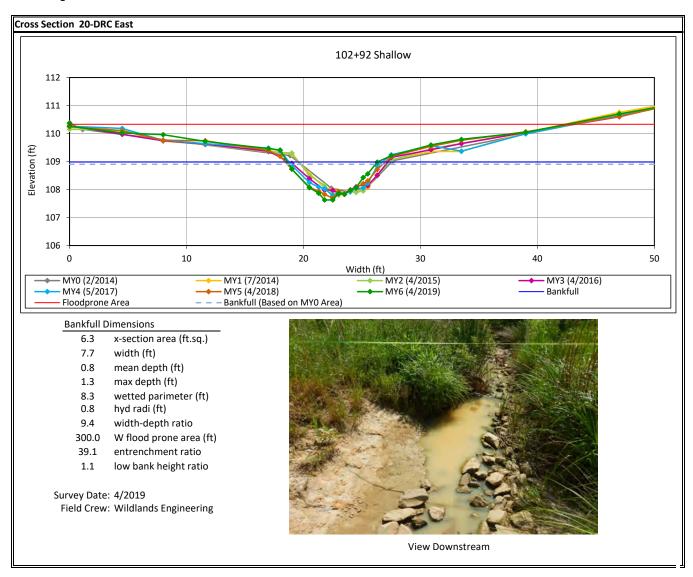


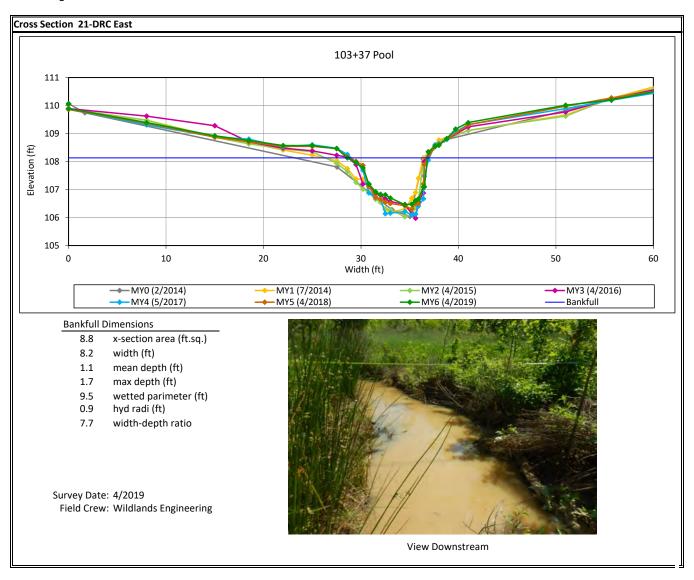


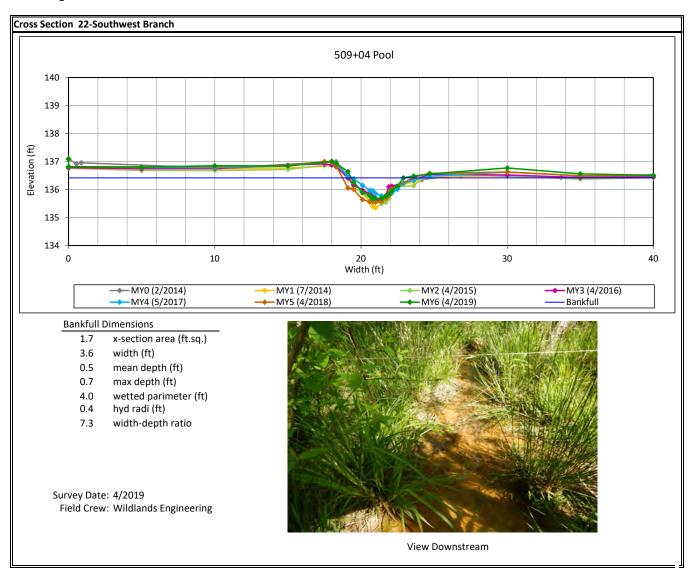


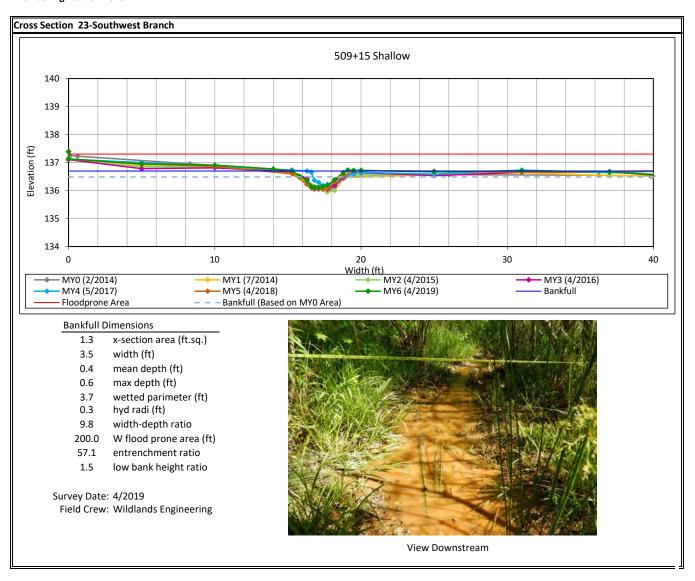


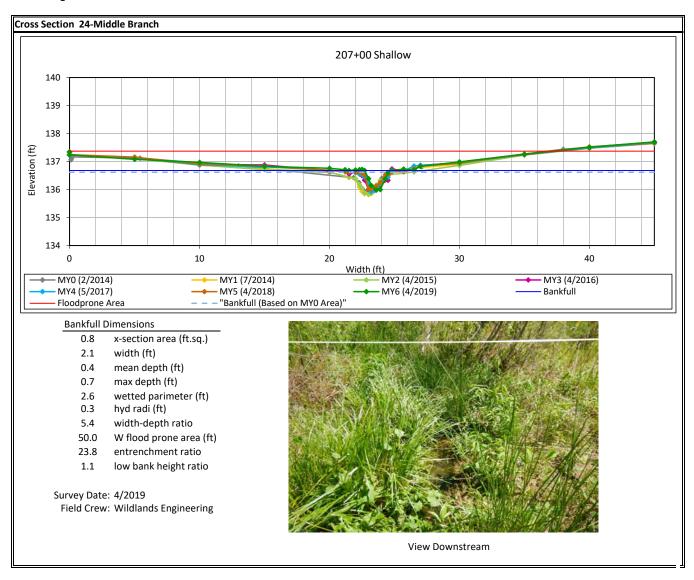


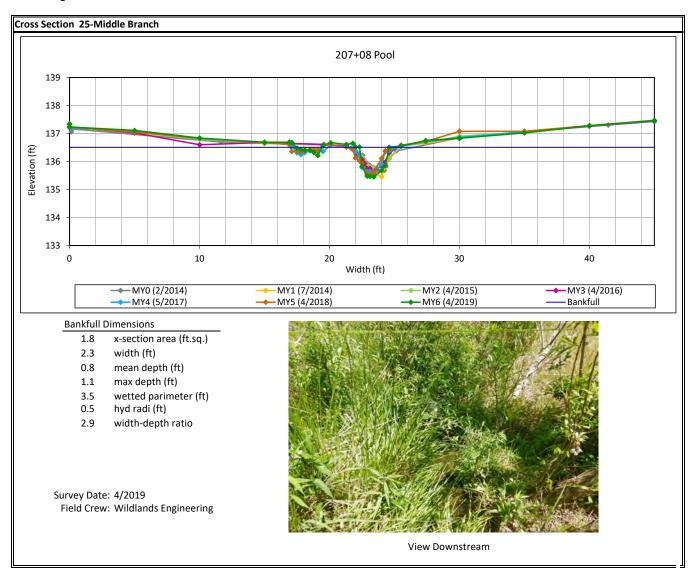


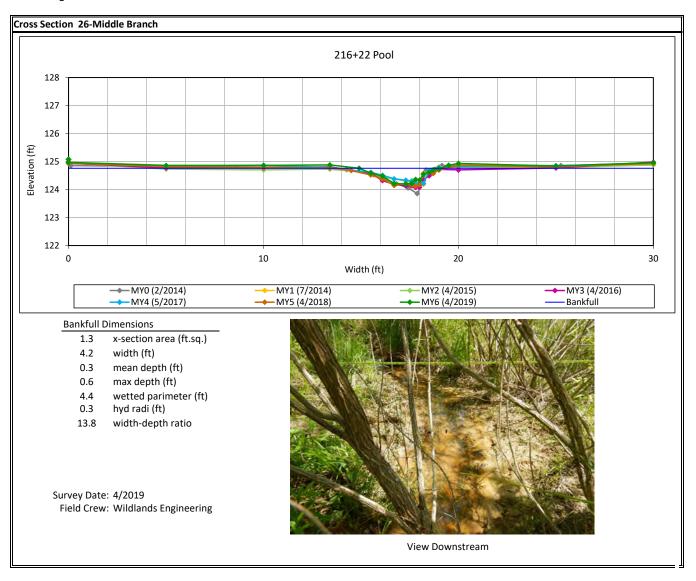


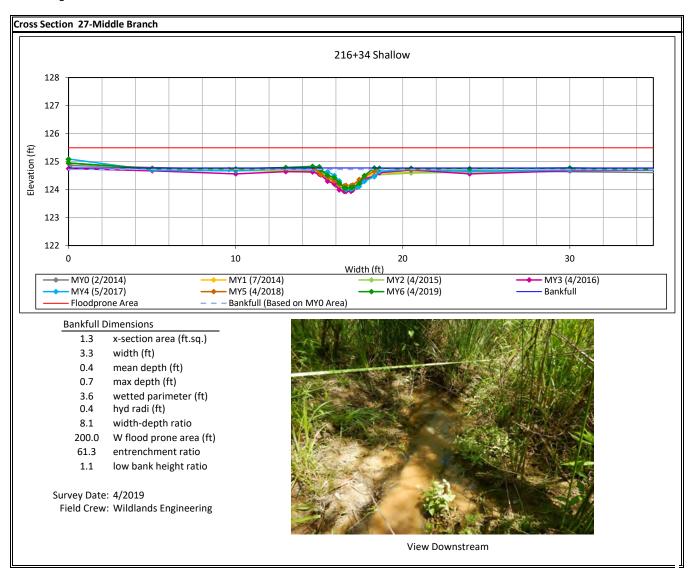


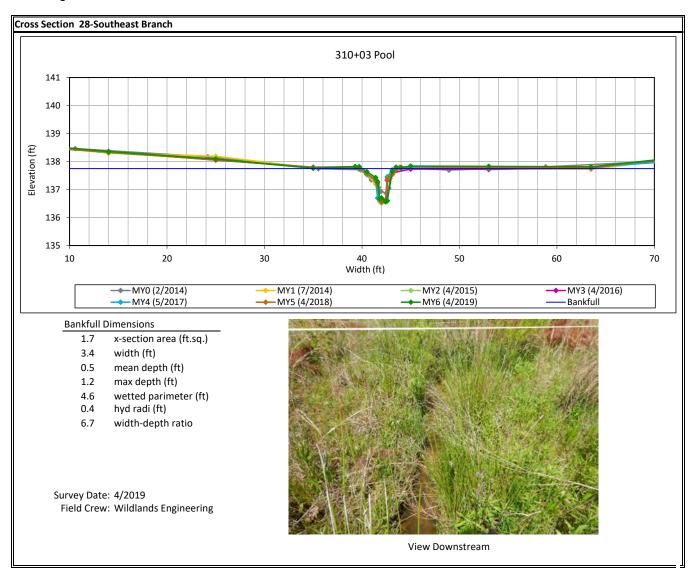


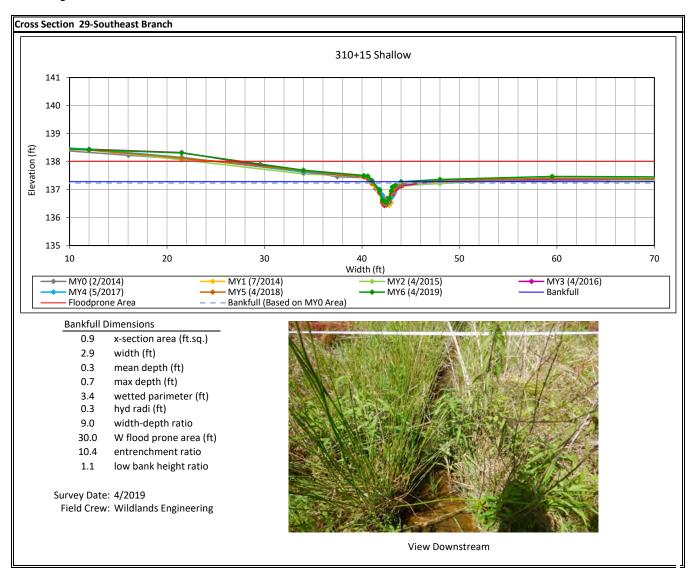


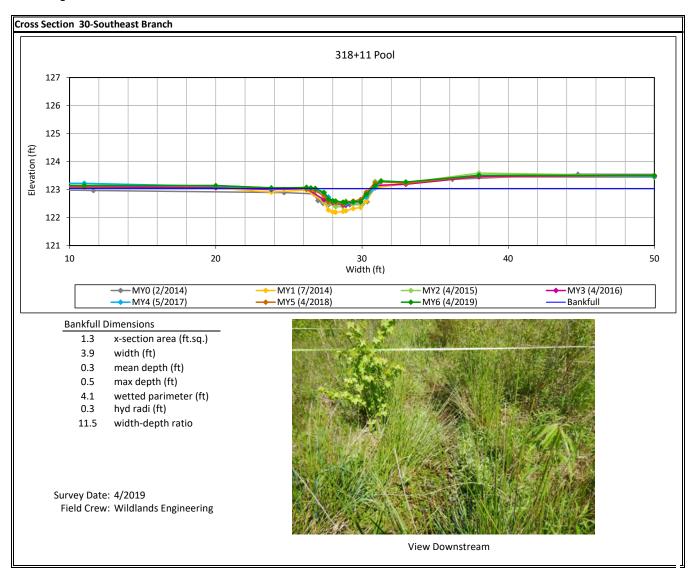


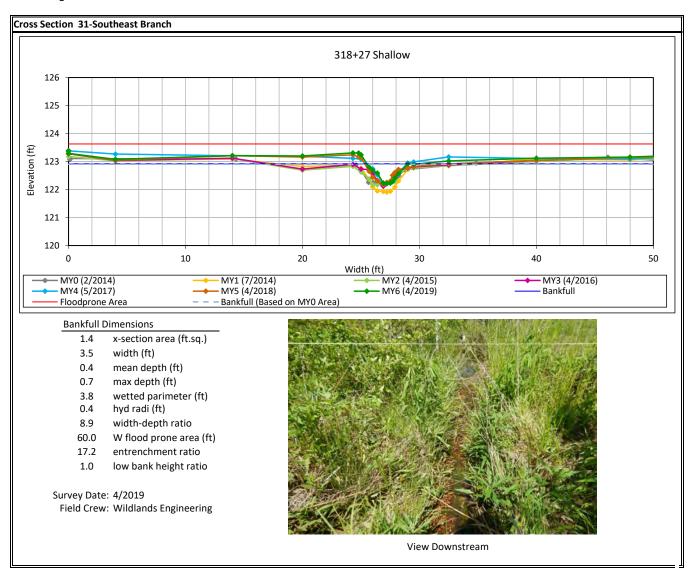


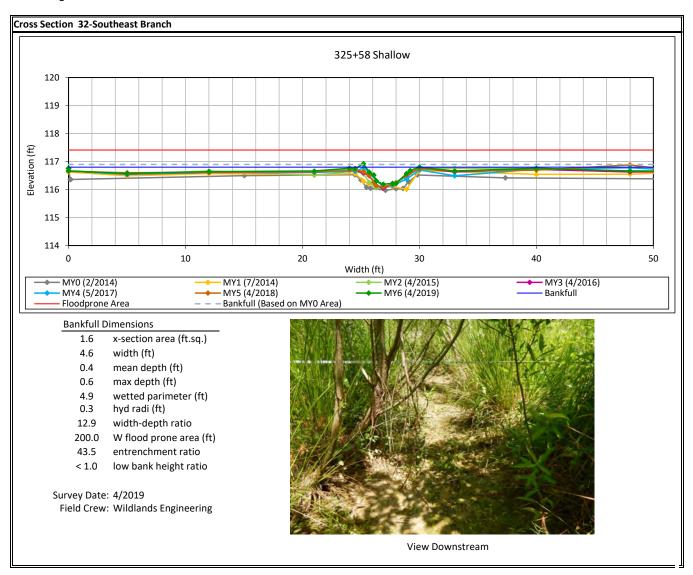


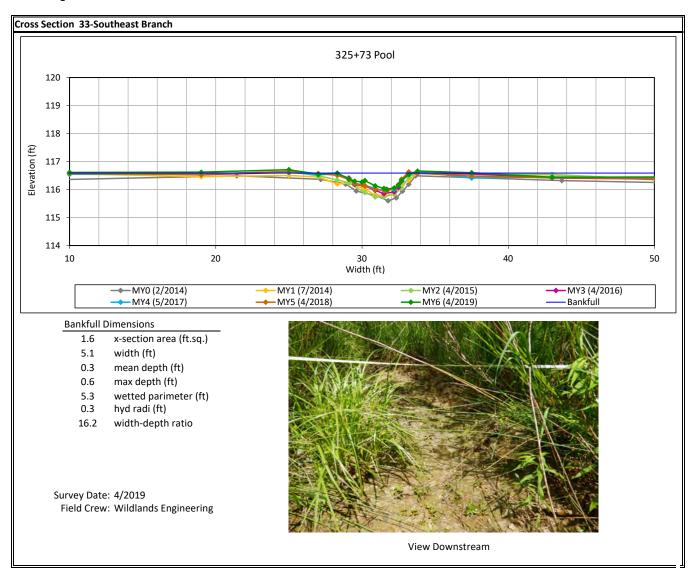


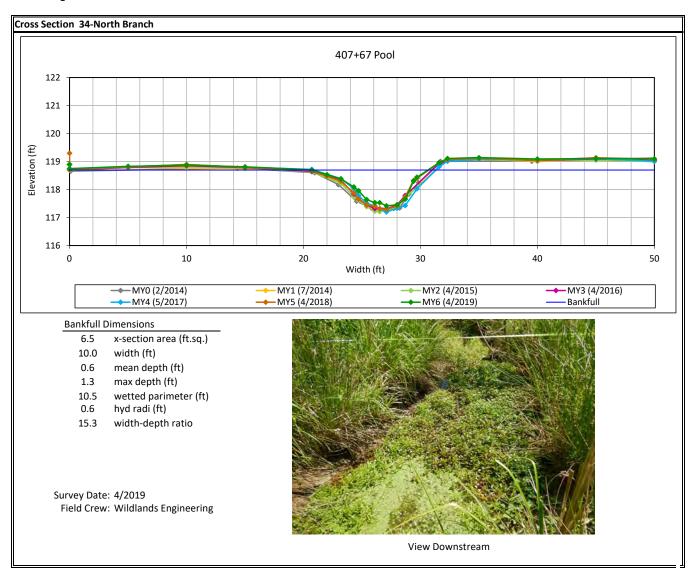


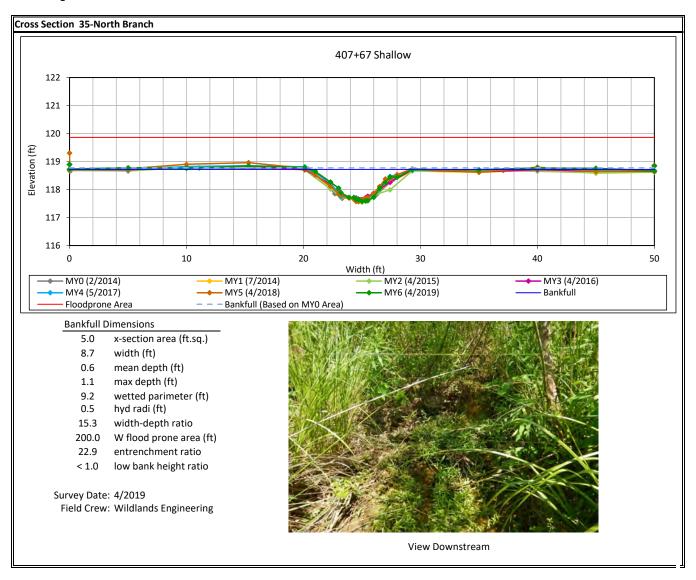


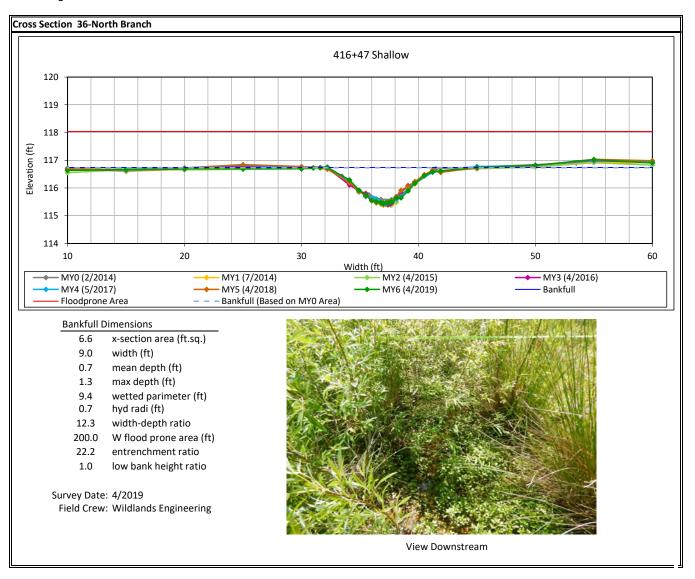


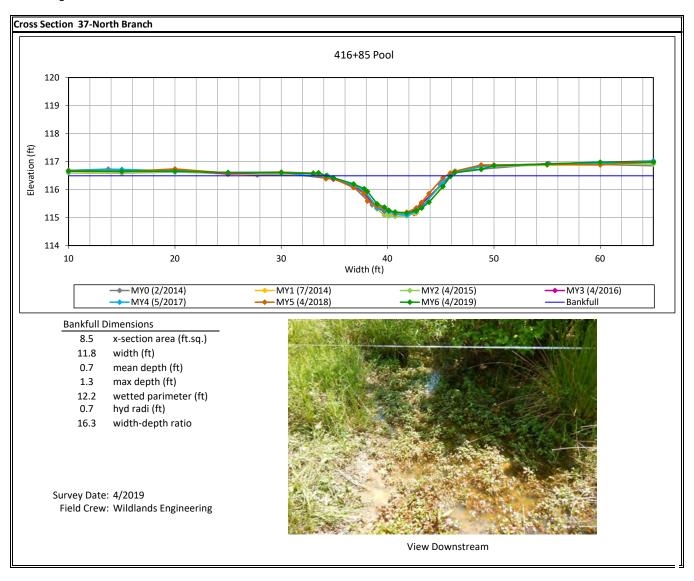












Cross Section Plots

APPENDIX 5. Hydrology Summary Data and Plots

Table 13. Verification of Bankfull Events

Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

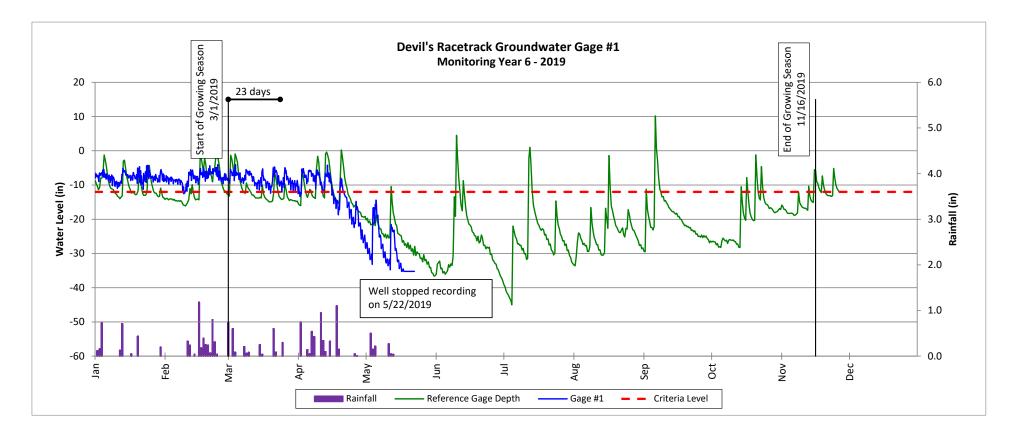
Reach	MY1	MY2	MY3	MY4	MY5	M		
	Date of Occurrence	Date of	Date of Occurrence	Date of Occurrence	Date of Occurrence	Date of Data	Date of Occurrence	Method
		Occurrence				Collection		
	3/28/2014 - 4/1/2014	3/5/2015	2/4/2016	3/14/2017	1/3/2018	3/6/2019	1/4/2019	-
	4/29/2014 - 5/1/2014	6/3/2015	4/13/2016	4/25/2017	1/29/2018	3/6/2019	2/13/2019	
	6/9/2014 - 6/20/2014	10/2/2015	4/23/2016	5/24/2017	3/20/2018	3/6/2019	3/3/2019	
	9/7/2014 - 9/9/2014		10/8/2016	6/15/2017	4/24/2018	9/25/2019	4/13/2019	
Devil's Racetrach (West)					5/29/2018	9/25/2019	5/4/2019	
					8/21/2018	9/25/2019	6/10/2019	
					9/15/2018	9/25/2019	7/12/2019	
					10/11/2018	9/25/2019	9/6/2019	
					11/13/2018	11/27/2019	10/23/2019	
					11/24/2018	11/27/2019	11/24/2019	
	Unknown	2/26/2015	2/4/2016	3/14/2017	1/3/2018	3/6/2019	1/4/2019	
Devil's Racetrach (East)	3/28/2014 - 4/1/2014	6/3/2015	6/3/2016	4/25/2017	1/29/2018	3/6/2019	2/18/2019	Crest Gage/ Pressure
	6/9/2014 - 6/20/2014	10/2/2015	10/8/2016	5/24/2017	3/20/2018	3/6/2019	2/23/2019	
					4/24/2018	3/6/2019	3/3/2019	
					5/29/2018	9/25/2019	4/14/2019	
					8/21/2018	9/25/2019	4/20/2019	
					9/15/2018	9/25/2019	6/10/2019	
					10/11/2018	9/25/2019	7/12/2019	
					11/13/2018	9/25/2019	9/6/2019	
					11/24/2018	11/27/2019	10/20/2019	
	4/29/2014 - 5/1/2014	3/5/2015	2/4/2016	4/25/2017	1/13/2018	3/6/2019	1/4/2019	Transducer
Southwest Branch	6/9/2014 - 6/20/2014	6/3/2015	10/8/2016	5/24/2017	2/12/2018	3/6/2019	3/3/2019	
Southwest Branch	9/7/2014 - 9/9/2014	10/2/2015			9/15/2018	9/25/2019	7/12/2019	
					11/13/2018	9/25/2019	9/6/2019	
	3/28/2014 - 4/1/2014	3/5/2015	2/4/2016	4/25/2017	1/29/2018	3/6/2019	1/4/2019	
	4/29/2014 - 5/1/2014	6/3/2015	10/8/2016	5/24/2017	4/24/2018	3/6/2019	2/18/2019	
Middle Branch	6/9/2014 - 6/20/2014	10/2/2015			5/29/2018	9/25/2019	4/13/2019	
	9/7/2014 - 9/9/2014				9/15/2018	9/25/2019	7/12/2019	
					11/13/2018	9/25/2019	7/23/2019	
Southeast Branch	3/28/2014 - 4/1/2014	Unkown	2/4/2016	3/14/2017	1/29/2018	3/6/2019	3/3/2019	
	4/29/2014 - 5/1/2014	10/2/2015	10/8/2016	4/25/2017	4/24/2018	9/25/2019	4/13/2019	
	6/9/2014 - 6/20/2014				5/29/2018	9/25/2019	7/12/2019	
	9/7/2014 - 9/9/2014				9/15/2018	9/25/2019	8/16/2019	
					11/13/2018	9/25/2019	9/6/2019	
North Branch	4/29/2014 - 5/1/2014	3/5/2015	2/4/2016	4/25/2017	1/3/2018	3/6/2019	1/4/2019	
	6/9/2014 - 6/20/2014	6/3/2015	10/8/2016	5/24/2017	1/29/2018	3/6/2019	3/3/2019	
	9/7/2014 - 9/9/2014	10/1/2015			3/20/2018	9/25/2019	4/13/2019	
					5/29/2018	9/25/2019	6/10/2019	
					9/15/2018	9/25/2019	7/12/2019	
					11/13/2018	9/25/2019	9/6/2019	

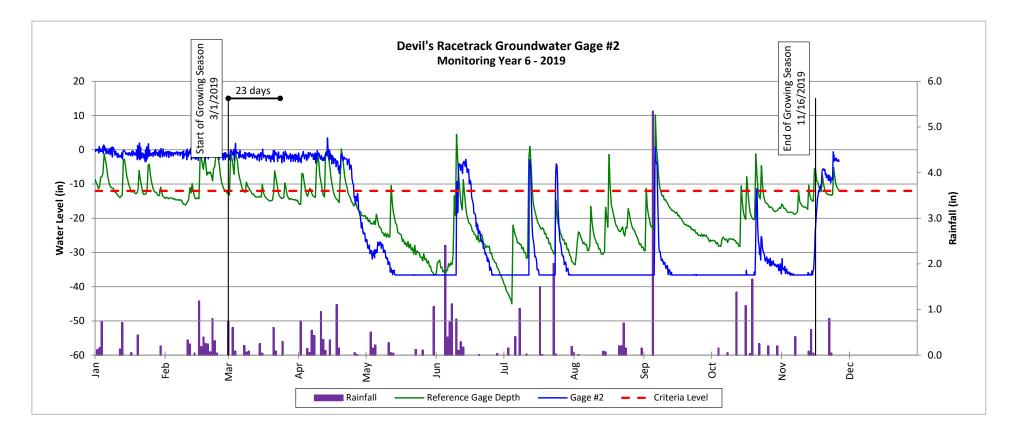
Table 14. In-Stream Flow Gage Attainment Summary Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

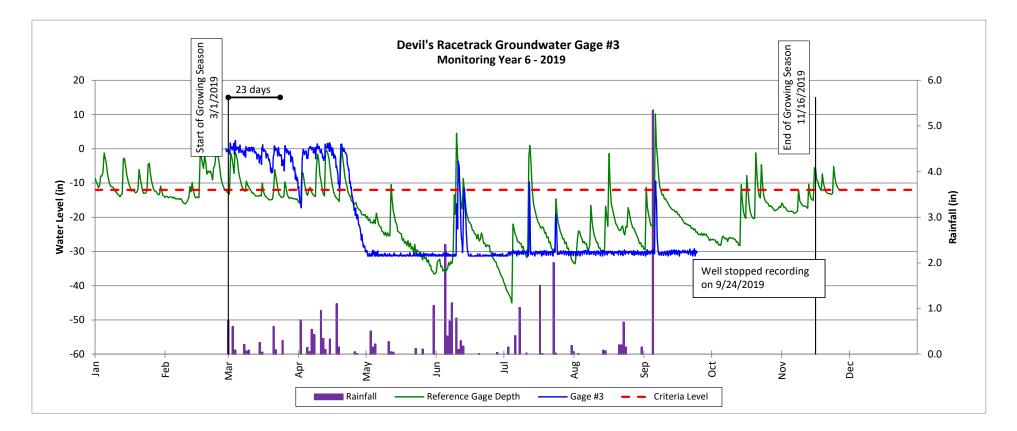
	Summ	ary of In-Stream Flo	ow Gage Results for	• Monitoring Years	1 through 7					
Deceb	Max Consecutive Days/ Total Days Meeting Success Criteria									
Reach	Year 1 (2014)	Year 2 (2015)	Year 3 (2016)	Year 4 (2017)	Year 5 (2018)	Year 6 (2019)	Year 7 (2020)			
Southwest Branch	114 Days/	365 Days/	365 Days/	365 Days/	*132 Days/	329 Days/				
Southwest Branch	143 Days	365 Days	365 Days	365 Days	132 Days	329 Days				
Middle Doorsel	102 Days/	365 Days/	365 Days/	*345 Days/	365 Days/	*276 Days/				
Middle Branch	243 Days	365 Days	365 Days	345 Days	365 Days	276 Days				
Courth a cost Duon ch	86 Days/	*16 Days/	136 Days/	70 Days/	*123 Days/	117 Days/				
Southeast Branch	134 Days	24 Days	229 Days	128 Days	216 Days	176 Days				

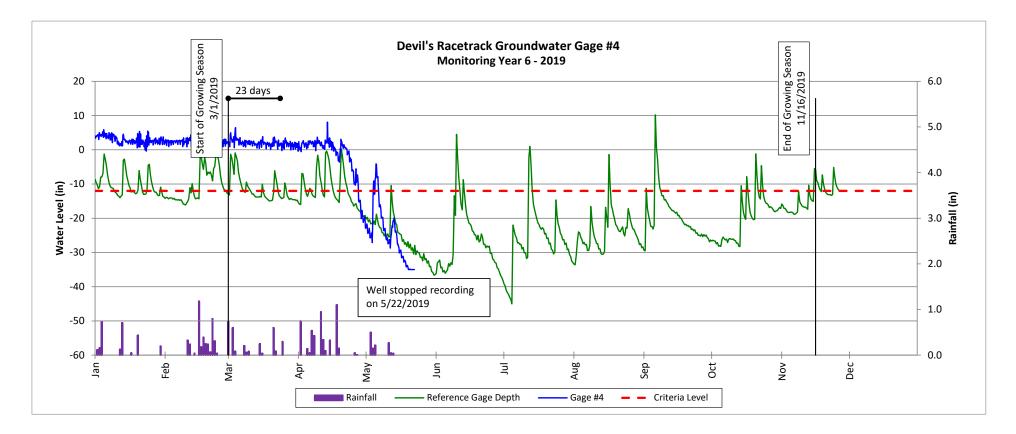
Success criteria is 30 consecutive days of flow.

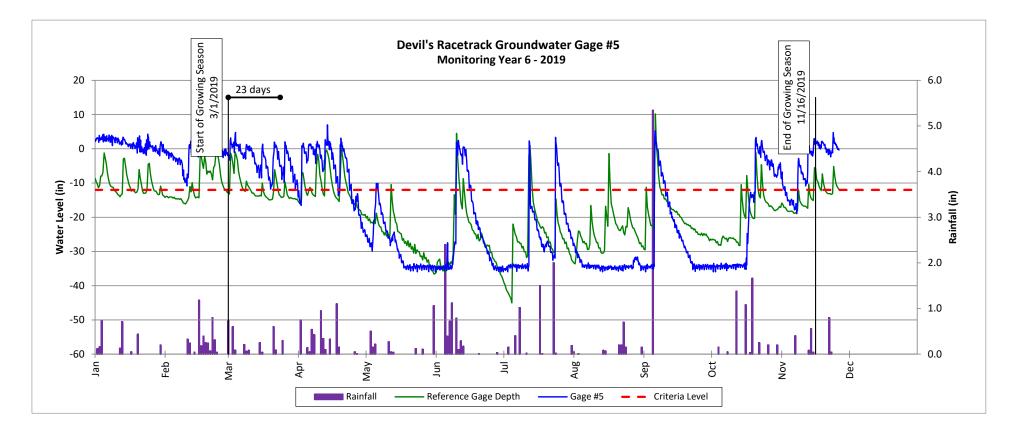
*A gage malfunction occurred during a portion of the monitoring year.

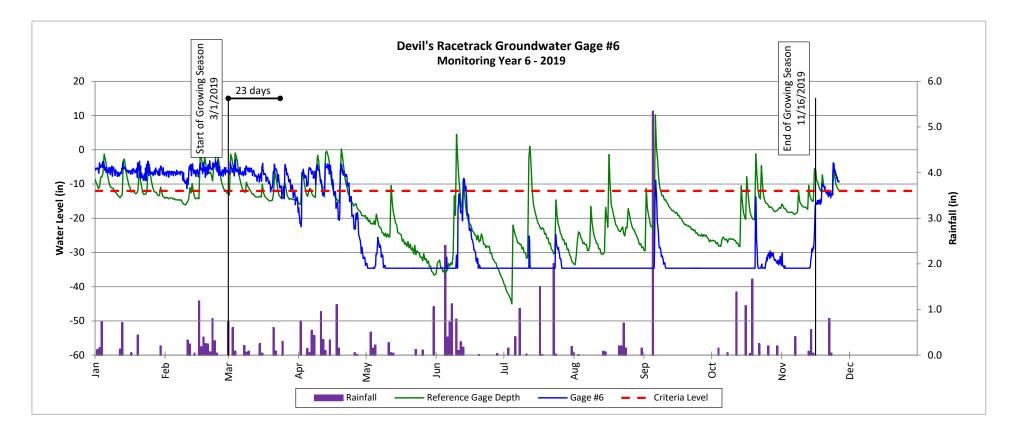

Table 15. Wetland Gage Attainment Summary Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

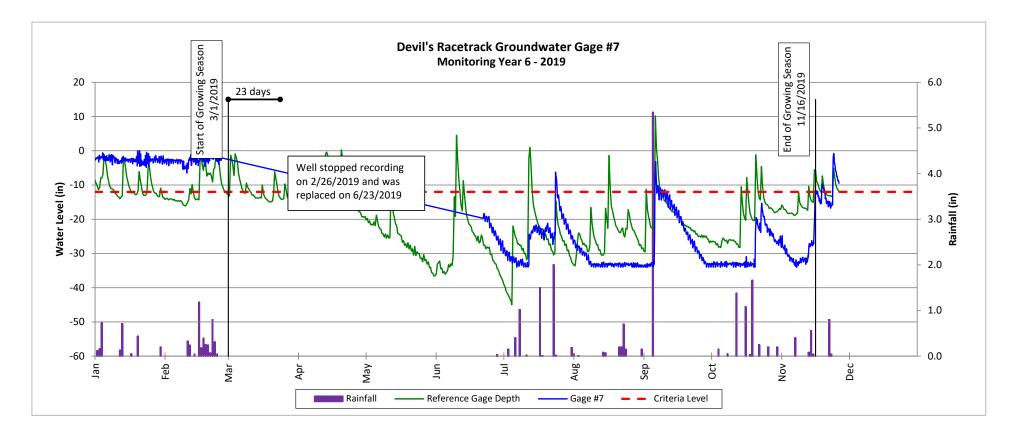

Com			ter Gage Results for a Achieved/Max Co			on (Percentage)	
Gage	Year 1 (2014)**	Year 2 (2015)	Year 3 (2016)	Year 4 (2017)	Year 5 (2018)	Year 6 (2019)	Year 7 (202
1	No/7.5 Days	No/16 Days	Yes/31 Days	Yes/28 Days	Yes/37 Days	Yes/48 Days	
	(3.1%) No/14.5 Days	(6.0%) Yes/ 58 Days	(11.9%) No/21 Days	(10.8%) No/15 Days	(14.2%) Yes/35 Days	(18.4%) Yes/57 Days	
2	(6.0%)	(22.3%)	(8.1%)	(5.8%)	(13.4%)	(21.8%)	
3	No/2.5 Days	Yes/33 Days		No/11 Days	Yes/35 Days	Yes/56 Days	
3	(1.0%)	(12.8%)	No/9 Days (3.5%)	(4.2%)	(13.4%)	(21.5%)	
4	No/13.5 Days	Yes/57 Days	Yes/25 Days	Yes/30 Days	Yes/67 Days	Yes/59 Days	
	(5.6%) No/12.5 Days	(21.9%) Yes/34 Days	(9.6%) No/18 Days	(11.5%) No/12 Days	(25.7%) Yes/36 Days	(22.6%) Yes/32 Days	
5	(5.2%)	(13.0%)	(6.9%)	(4.6%)	(13.8%)	(12.3%)	
6	No/11.0 Days	Yes/53 Days	Yes/23 Days	No/13 Days	No/14 Days	Yes/30 Days	
0	(4.6%)	(20.3%)	(8.8%)	(5.0%)	(5.4%)	(11.5%)	
7	Yes/21.5 Days (9.0%)	Yes/66 Days (25.6%)	Yes/25 Days (9.6%)	Yes/23 Days (8.8%)	Yes/51 Days (19.5%)	No/7 Days * (2.7%)	
	No/5.0 Days	Yes/31 Days	No/8 Days	No/10 Days	Removed During	Removed During	
8	(2.1%)	(12.0%)	(3.1%)	(3.8%)	MY5	MY5	
9	Yes/ 22.0 Days	Yes/80 Days	Yes/ 39.0 Days	Yes/28 Days	Yes/36 Days	Yes/55 Days	
5	(9.2%)	(31.0%)	(15.0%)	(10.8%)	(13.8%)	(21.1%)	
10	No/ 1.5 Days (0.6%)	No/10 Days (3.9%)	No/ 3 Days (1.2%)	No/3 Days (1.2%)	Removed During MY4	Removed During MY4	
	No/9.0 Days	Yes/65 Days	Yes/23 Days	Yes/31 Days	Yes/52 Days	Yes/59 Days	
11	(3.8%)	(25.2%)	(8.8%)	(11.9%)	(19.9%)	(22.6%)	
12	No/7.5 Days	Yes/31 Days	No/13 Days	Yes/30 Days	Yes/52 Days	Yes/58 Days	
	(3.1%)	(12.0%)	(5.0%)	(11.5%)	(20.3%)	(22.2%)	
13	No/8.0 Days (3.3%)	Yes/34 Days (13.0%)	No/11 Days (4.2%)	No/10 Days (3.8%)	No/14 Days (5.4%)	No/19 Days (7.3%)	
	No/ 8.5 Days	Yes/32 Days	No/12 Days	No/12 Days	Yes/35 Days	Yes/56 Days	
14	(3.5%)	(12.4%)	(4.6%)	(4.6%)	(13.4%)	(21.5%)	
15	No/12.5 Days	Yes/33 Days	No/14 Days	Yes/30 Days	Yes/37 Days	Yes/59 Days	
-	(5.2%)	(12.8%)	(5.4%)	(11.5%)	(14.2%) Yes/36 Days	(22.6%)	
16	No/12.5 Days (5.2%)	Yes/33 Days (12.8%)	Yes/39 Days (15.0%)	Yes/29 Days (11.2%)	(13.8%)	Yes/55 Days (21.1%)	
47	No/15.0 Days	Yes/34 Days	Yes/23 Days	No/16 Days	Yes/37 Days	Yes/56 Days	
17	(6.3%)	(13.2%)	(8.8%)	(6.2%)	(14.2%)	(21.5%)	
18	Yes/69.5 Days	Yes/66 Days	Yes/22 Days	No/14 Days	Yes/36 Days	Yes/59 Days	
	(29.0%) Yes/31.5 Days	(25.6%)	(8.5%) Yes/26 Days	(5.4%)	(13.8%)	(22.6%)	
19	(13.1%)	Yes/66 Days (25.6%)	(10.0%)	Yes/30 Days (11.5%)	Yes/37 Days (14.2%)	Yes/59 Days (22.6%)	
20	No/19.5 Days	Yes/35 Days	No/12 Days	No/5 Days	No/13 Days	No/0 Days	
20	(8.1%)	(13.4%)	(4.6%)	(1.9%)	(5.0%)	(0%)	
21	Yes/69.5 Days	Yes/79 Days	Yes/38 Days	Yes/31 Days	Yes/37 Days	No/14 Days *	
	(29.0%) Yes/ 31.0 Days	(30.4%) Yes/66 Days	(14.6%) Yes/24 Days	(11.9%) No/16 Days	(14.2%) Yes/37 Days	(5.4%) No/9 Days *	
22	(12.9%)	(25.6%)	(9.2%)	(6.2%)	(14.2%)	(3.4%)	
23	No/8.0 Days	Yes/31 Days	No/6 Days	No/5 Days	No/5 Days	No/6 Days	
23	(3.3%)	(11.8%)	(2.3%)	(1.9%)	(1.9%)	(2.3%)	
24	No/13.0 Days	Yes/33 Days	No/ 5 Days	No/9 Days	No/12 Days	No/16 Days	
	(5.4%) Yes/25.5 Days	(12.8%) Yes/66 Days	(1.9%) Yes/23 Days	(3.5%) No/16 Days	(4.6%) Yes/52 Days	(6.1%) Yes/60 Days	
25	(10.6%)	(25.6%)	(8.8%)	(6.2%)	(19.9%)	(23.0%)	
26	Yes/39.0 Days	Yes/83 Days	Yes/25 Days	No/14 Days	No/14 Days	No/19 Days	
20	(16.3%)	(32.2%)	(9.6%)	(5.4%)	(5.4%)	(7.3%)	
27	Yes/29.5 Days	Yes/67 Days	Yes/31 Days	Yes/32 Days	Yes/37 Days	Yes/59 Days	
	(12.3%) No/19.5 Days	(26.0%) Yes/81 Days	(11.9%) Yes/106 Days	(12.3%) Yes/102 Days	(14.2%) Yes/111 Days	(22.6%) Yes/77 Days	
28	(8.1%)	(31.2%)	(40.8%)	(39.2%)	(42.5%)	(29.5%)	
29	Yes/70.0 Days	Yes/81 Days	Yes/56 Days	Yes/78 Days	Yes/76 Days	Yes/63 Days	
23	(29.2%)	(31.4%)	(21.5%)	(30.0%)	(29.1%)	(24.1%)	
30	Yes/52.5 Days (21.9%)	Yes/83 Days (32.0%)	No/11 Days (4.2%)	No/9 Days (3.5%)	No/22 Days (8.4%)	Yes/31 Days (11.9%)	
	No/9.0 Days	Yes/77 Days	Yes/40 Days	Yes/32 Days	Yes/66 Days	Yes/61 Days	
31	(3.8%)	(29.7%)	(15.4%)	(12.3%)	(25.3%)	(23.4%)	
32	No/ 7.0 Days	Yes/78 Days	No/11 Days	No/3 Days	Removed During	Removed During	
52	(2.9%)	(30.2%)	(4.2%)	(1.2%)	MY5	MY5	
33	Yes/69.5 Days (29.0%)	Yes/84 Days (32.4%)	Yes/51 Days (19.6%)	Yes/46 Days (17.7%)	Yes/64 Days (24.5%)	Yes/63 Days (24.1%)	
	No/2.0 Days	No/16 Days	No/10 Days	No/4 Days	No/9 Days	Removed During	
34	(0.8%)	(6.0%)	(3.8%)	(1.5%)	(3.4%)	MY6	
35	Added During	Yes/33 Days	Yes/42 Days	Yes/31 Days	Yes/67 Days	Yes/59 Days	
	MY2	(12.8%)	(16.2%)	(11.9%)	(25.7%)	(22.6%)	
36	Added During MY2	Yes/34 Days (13.0%)	Yes/40 Days (15.4%)	Yes/31 Days (11.9%)	Yes/53 Days (20.3%)	Yes/59 Days (22.6%)	
	Added During	(13.0%) Yes/33 Days	Yes/22 Days	(11.9%) No/15 Days	(20.3%) Yes/36 Days	(22.6%) Yes/32 Days	
37	MY2	(12.8%)	(8.5%)	(5.8%)	(13.8%)	(12.3%)	
38	Added During	Yes/33 Days	No/6 Days	No/11 Days	Yes/36 Days	Yes/59 Days	
30	MY2	(12.8%)	(2.3%)	(4.2%)	(13.8%)	(22.6%)	
	Added During	Added During	Added During	Added During MY5	Yes/65 Days (24.9%)	Yes/60 Days (23.0%)	
39	MAVE						
	MY5 Added During	MY5 Added During	MY5 Added During				
39 40	MY5 Added During MY5	MY5 Added During MY5	Added During MY5	Added During MY5	Yes/40 Days (15.3%)	Yes/56 Days (21.5%)	

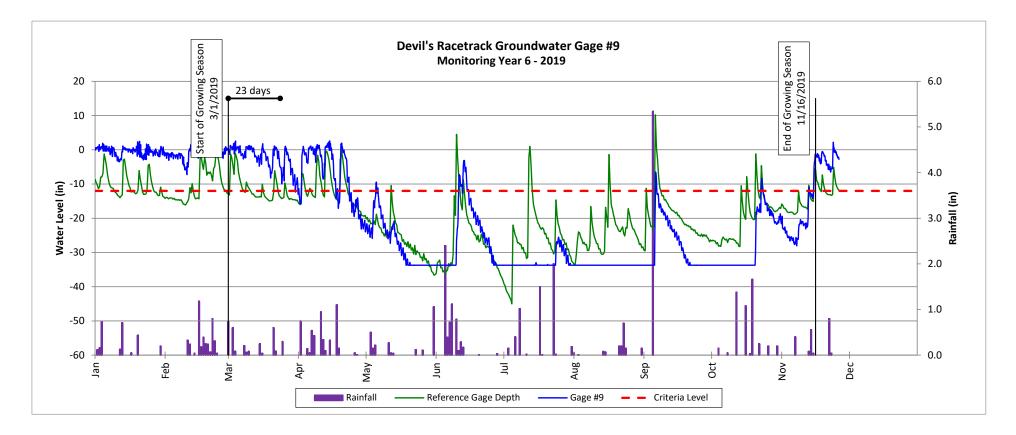

Success criteria is a free groundwater surface within 12 inches of the ground surface for 8.5% of the growing season.

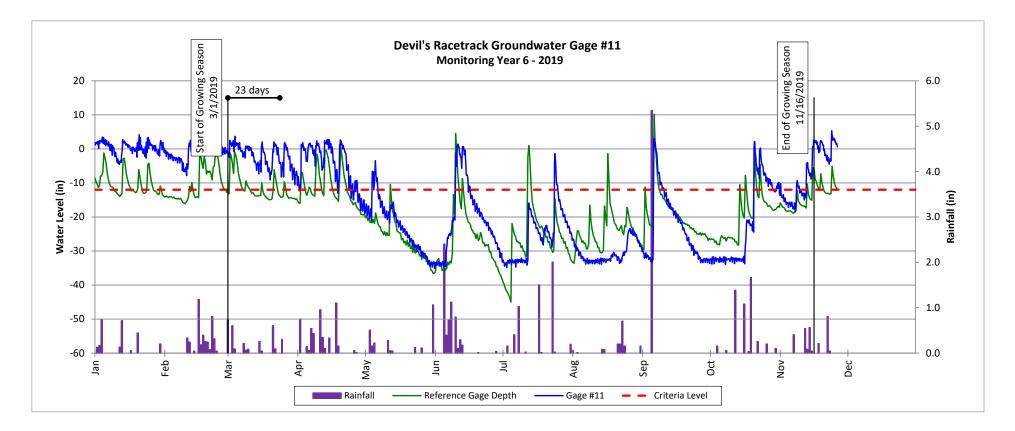

* Groundwater gages 7, 21, & 22 malfunctioned during the spring of 2019 (MY6).

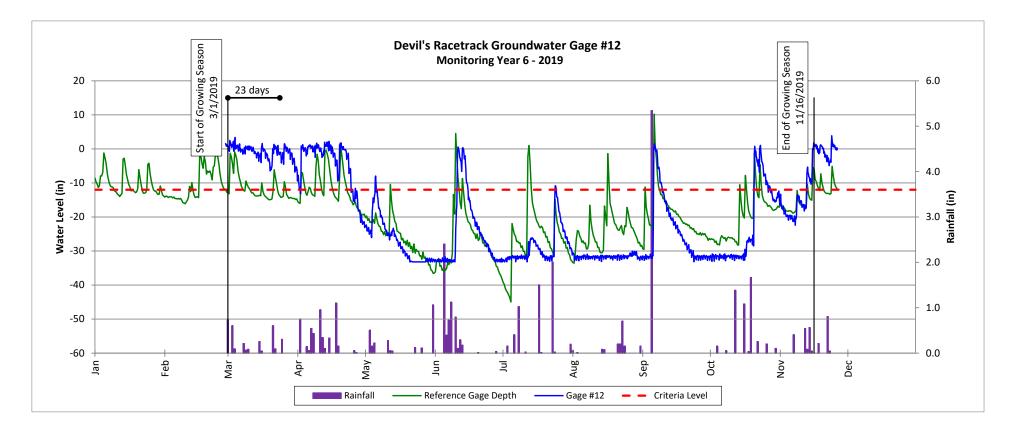

** NRCS WETS data was used to determine the growing season for monitory year 1. After discussions with the US Army Corps of Engineers, on-site soil temperature probe data is being used to determine the beginning of the growing season.

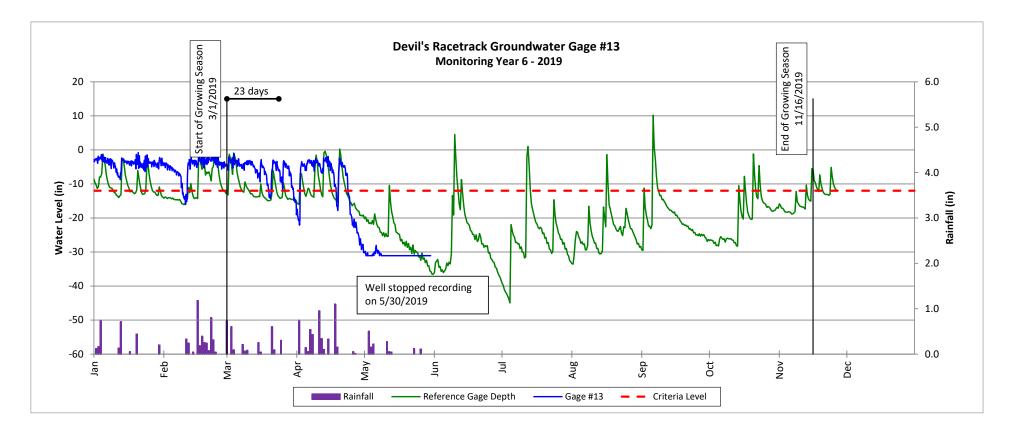


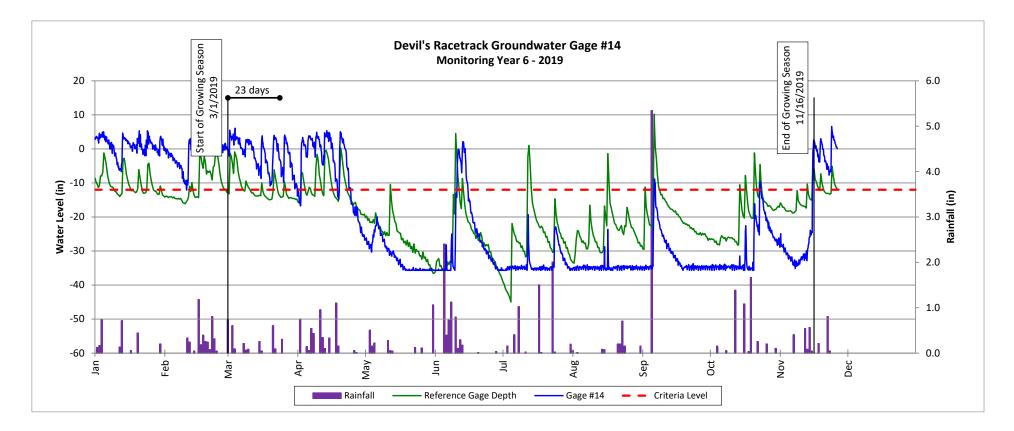


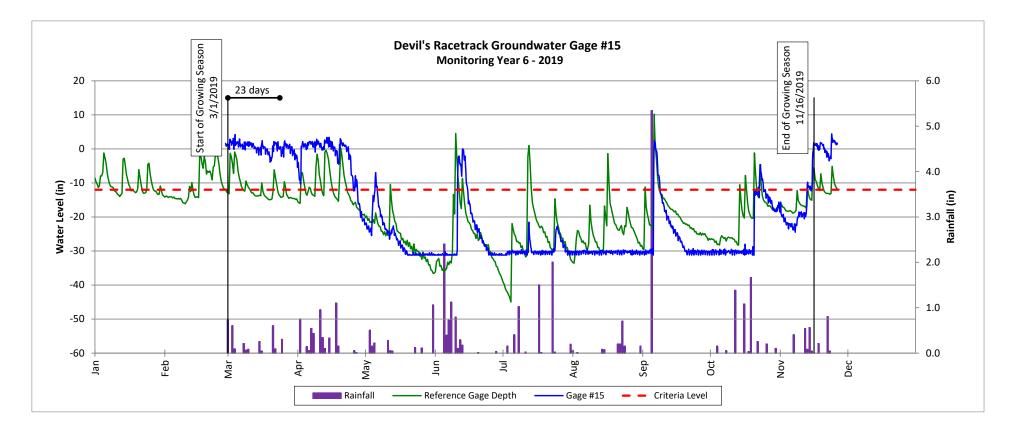


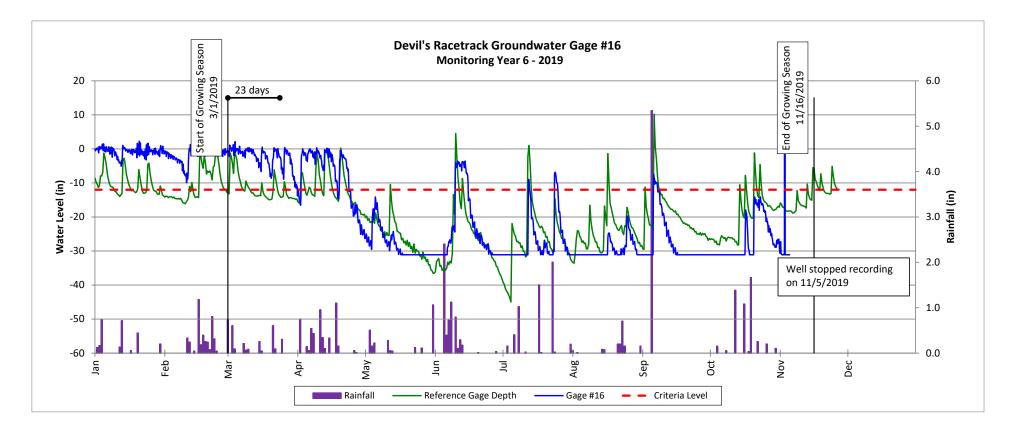


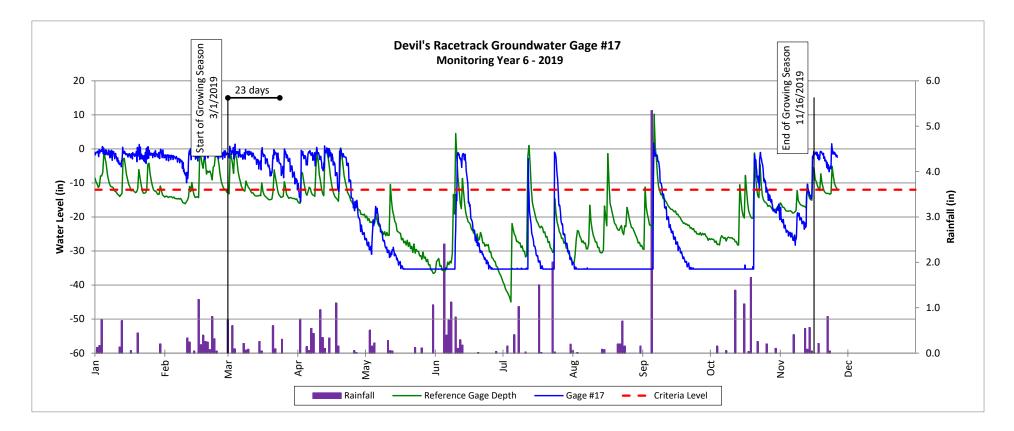


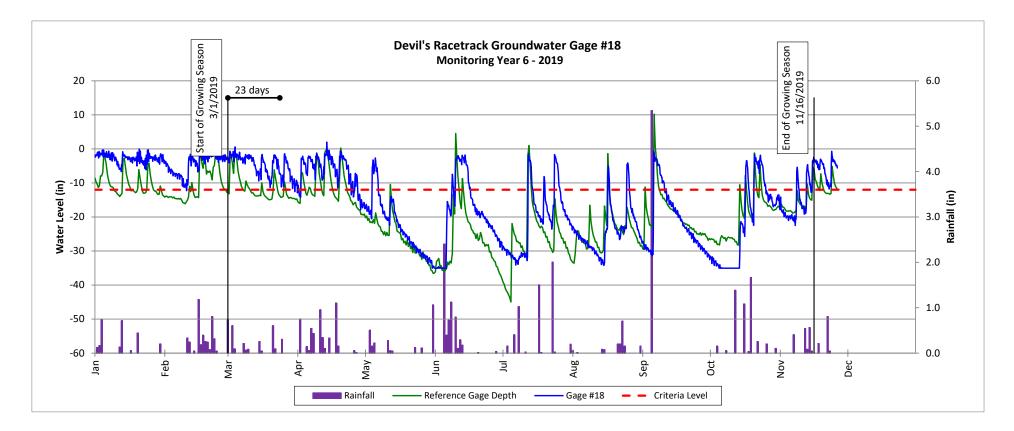


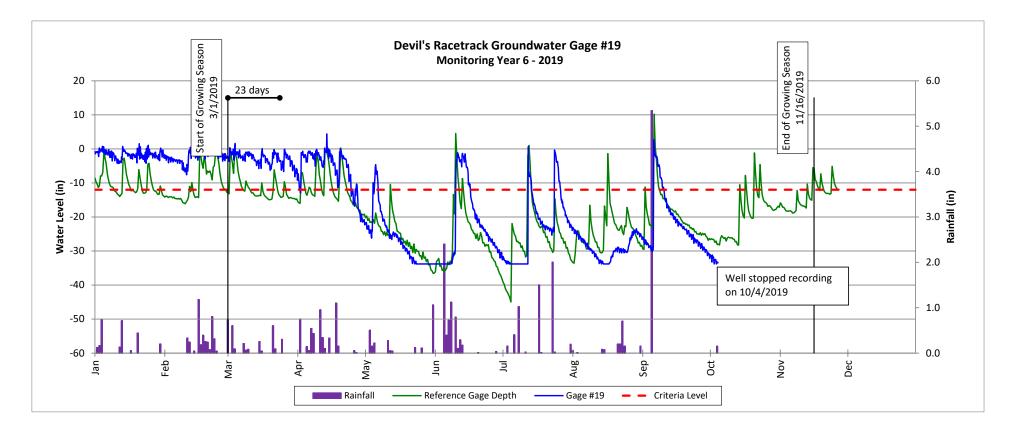


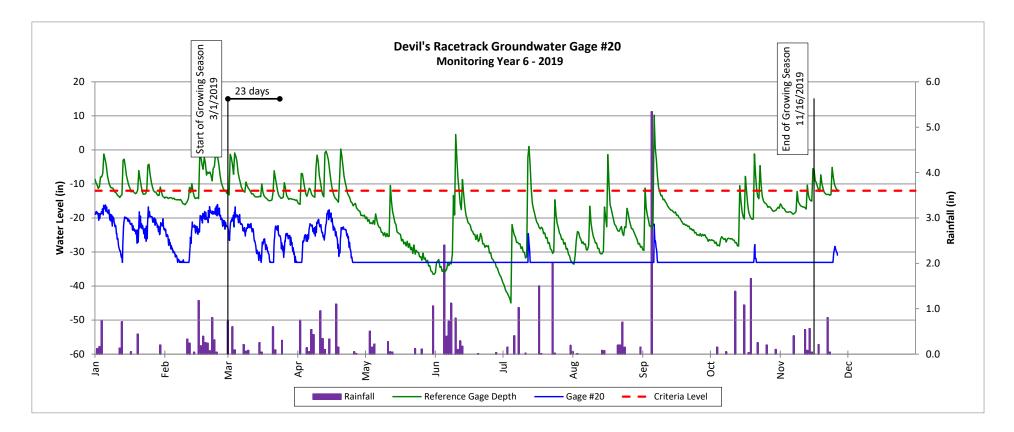


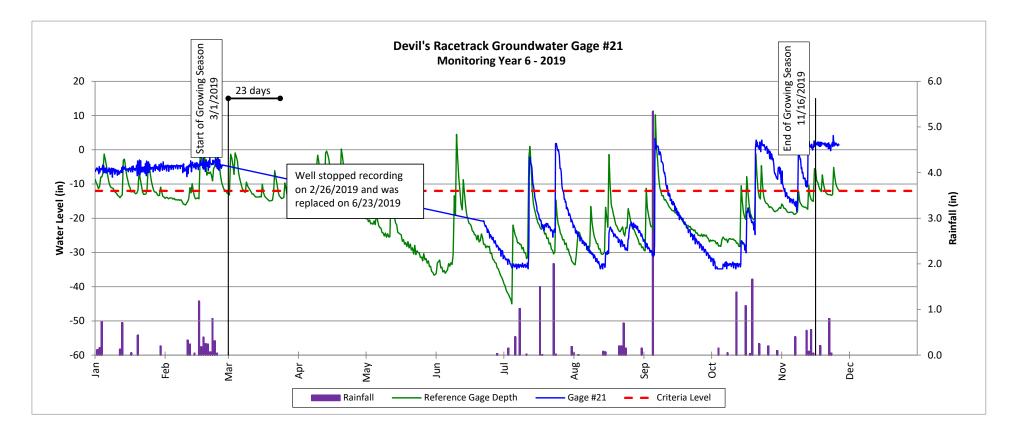


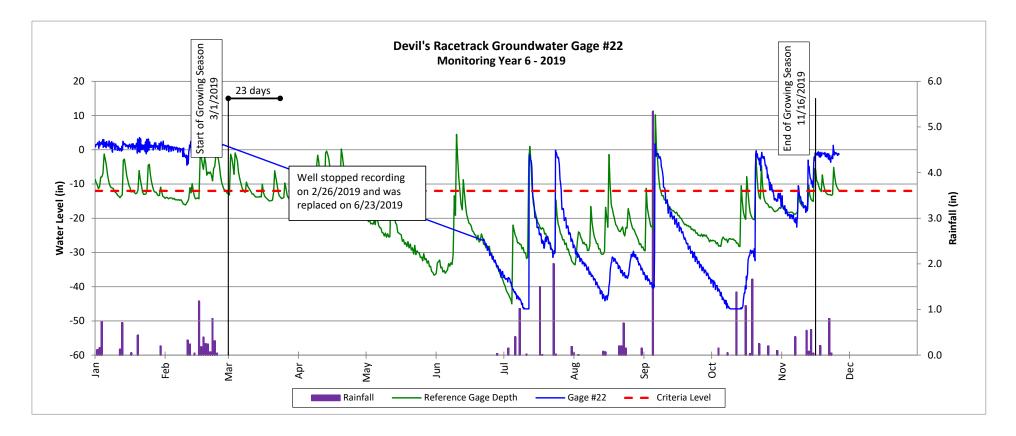


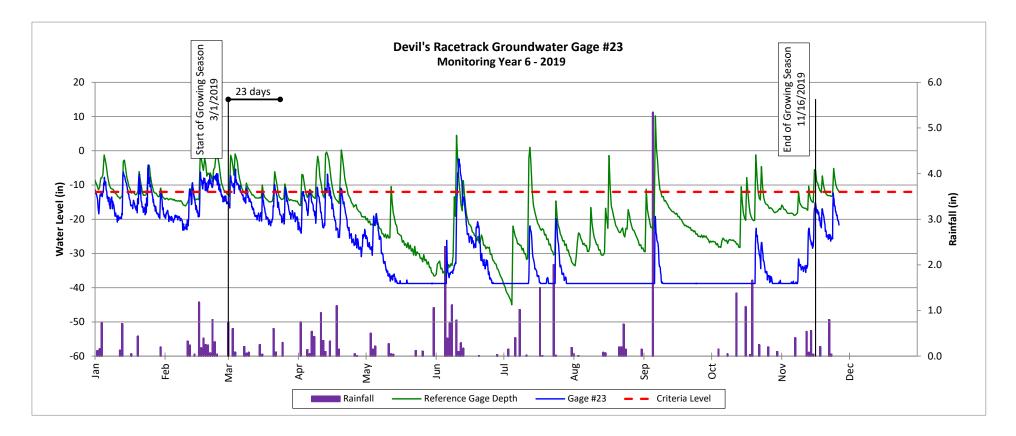


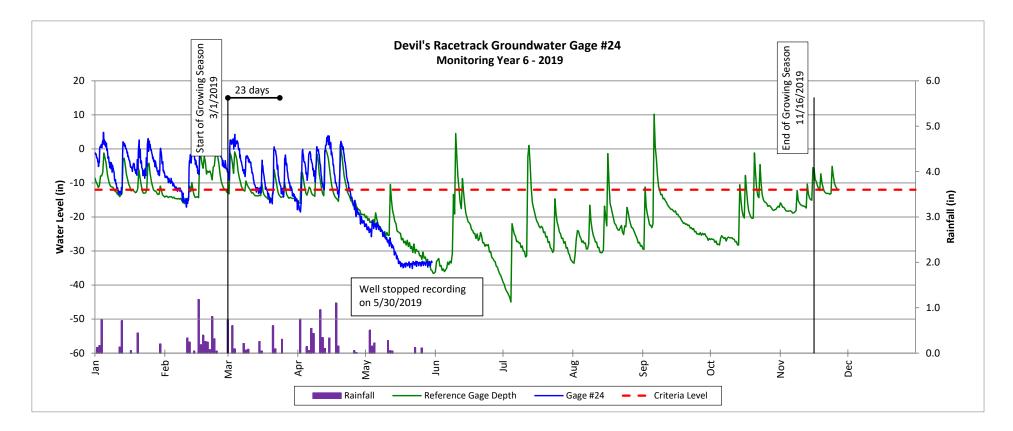


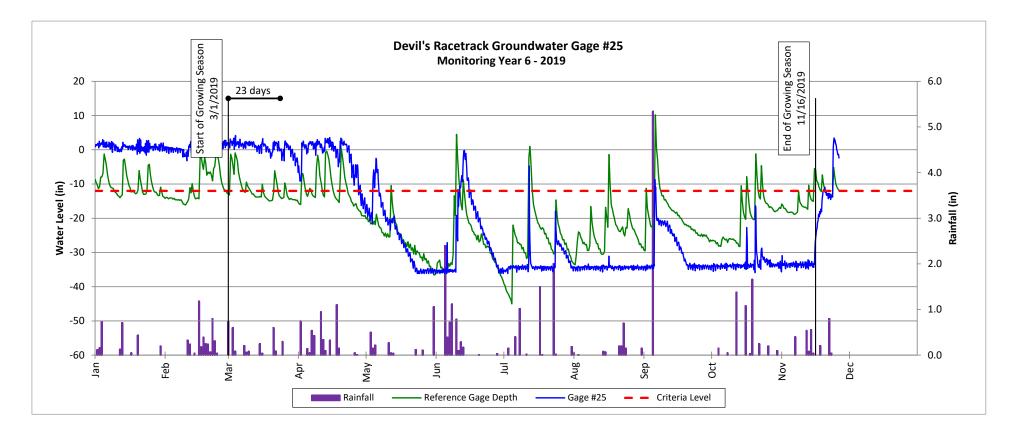


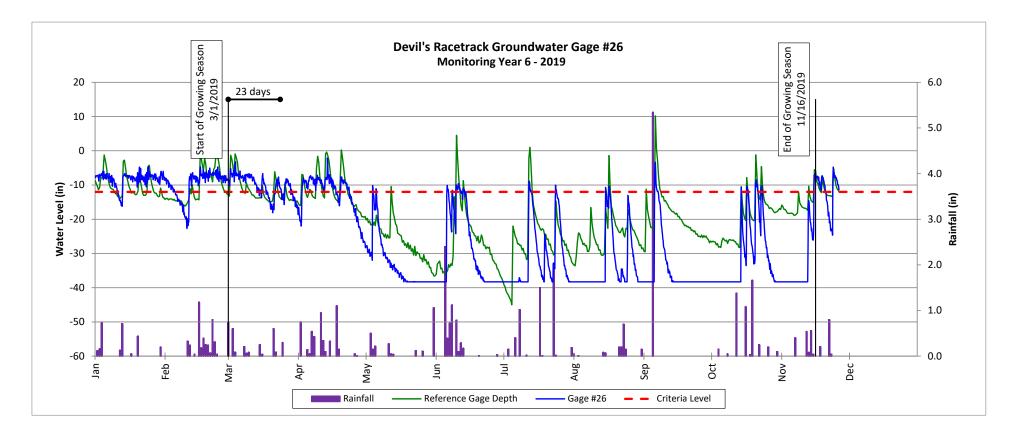


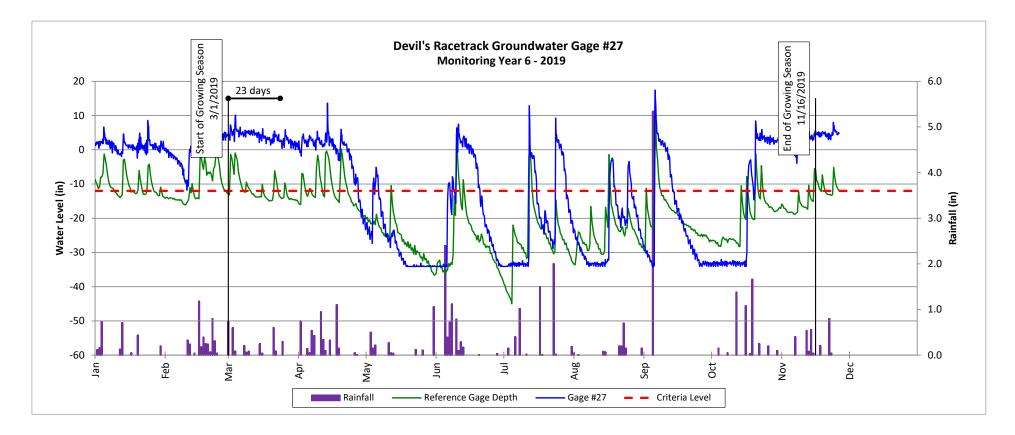


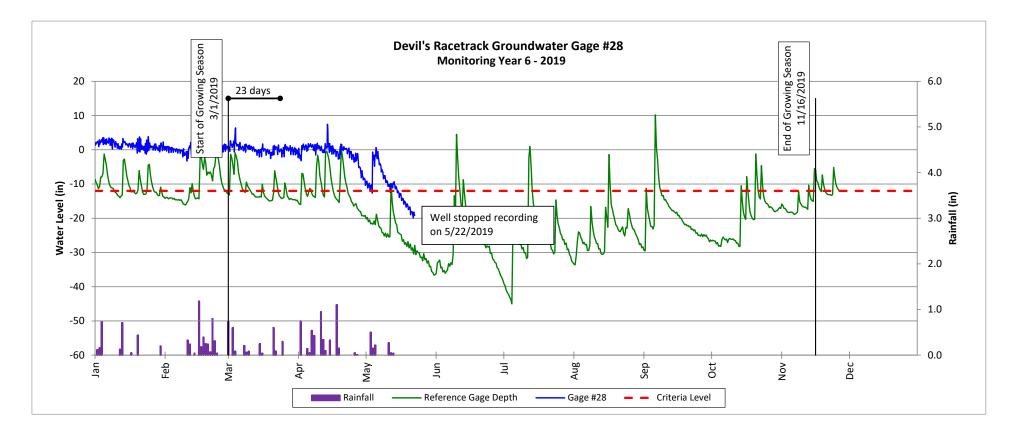


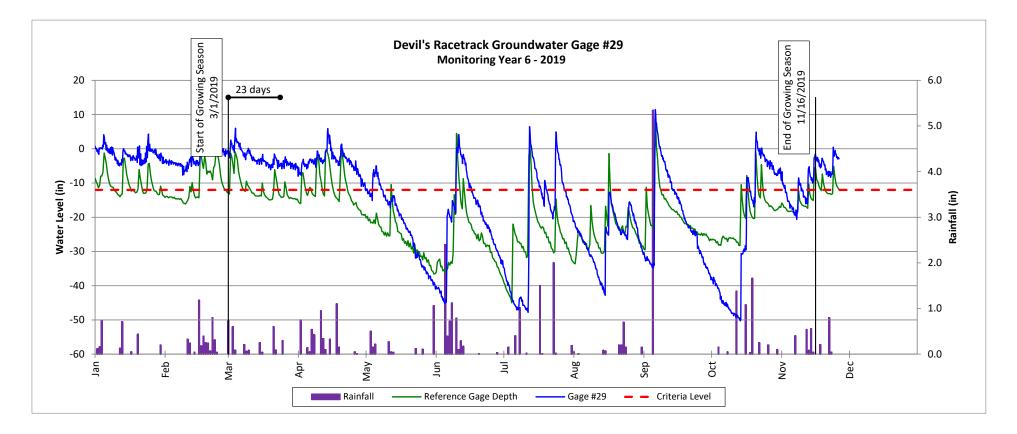


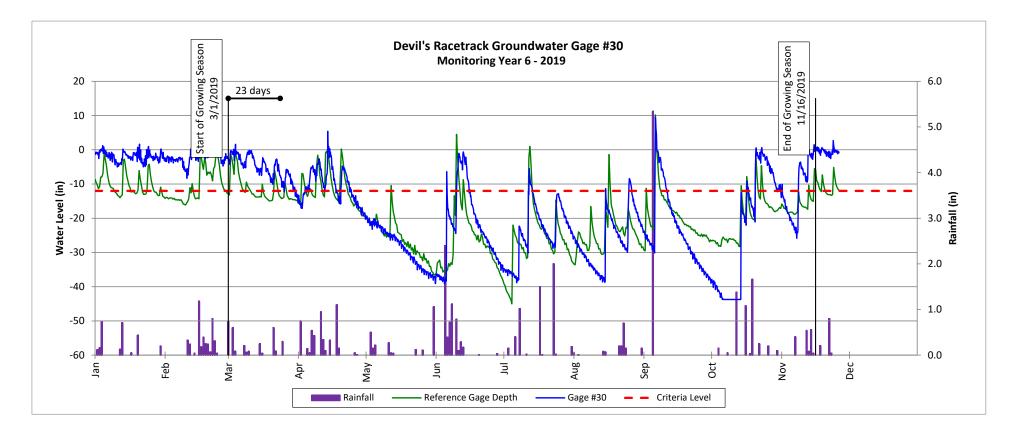


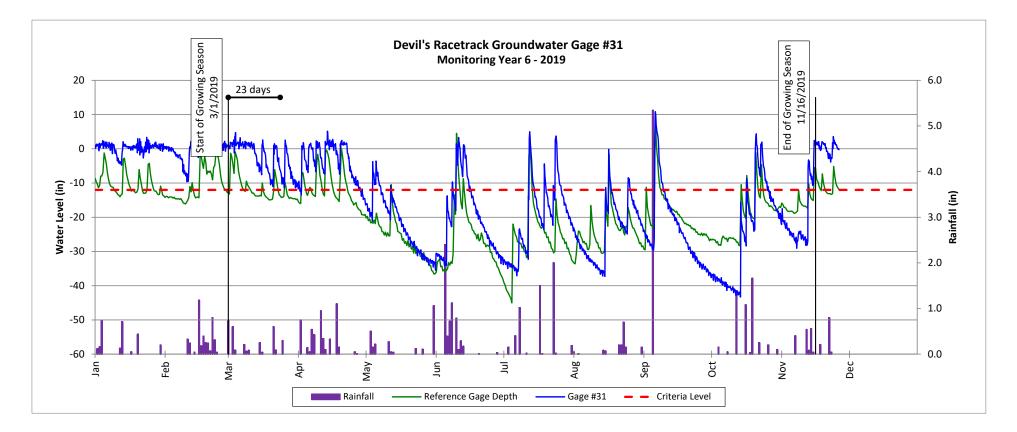


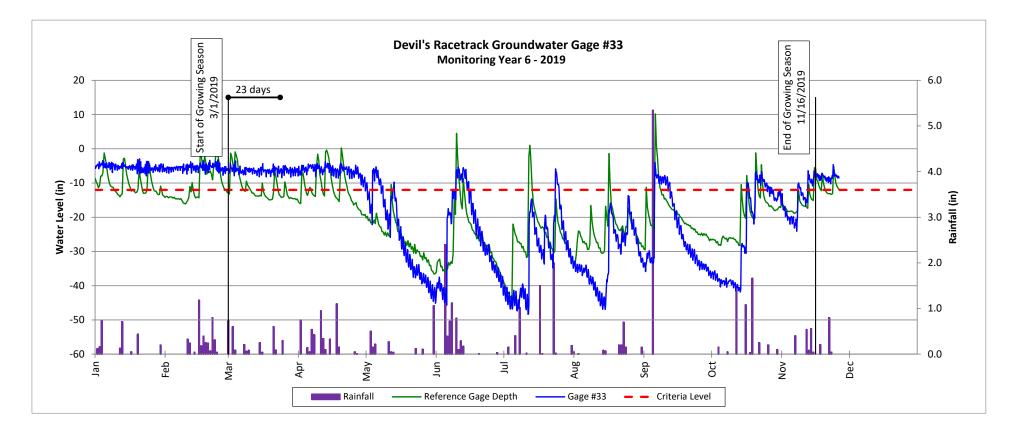


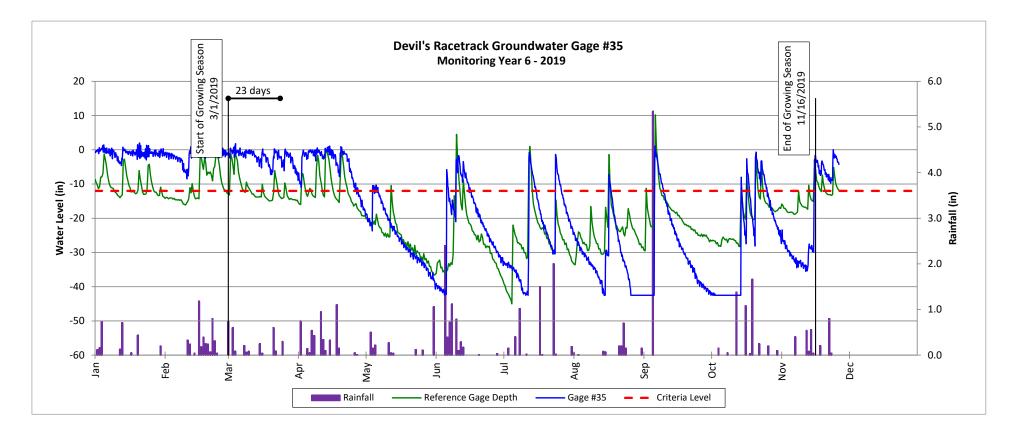


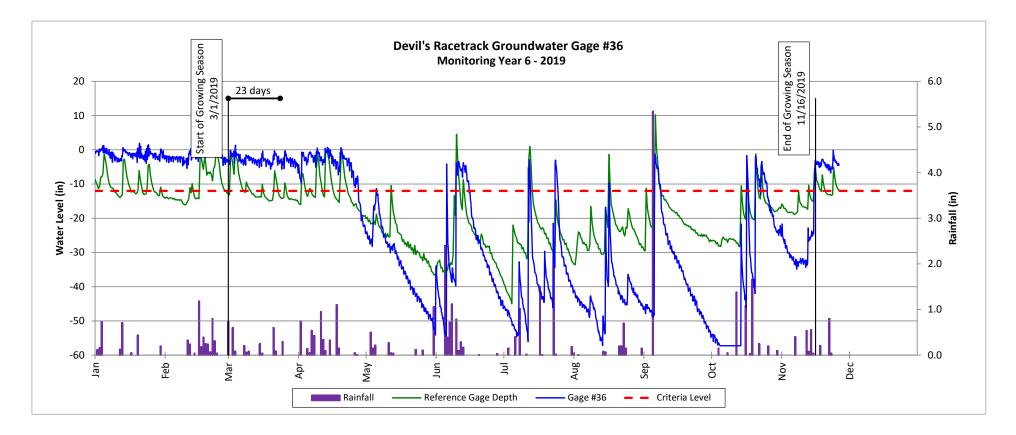


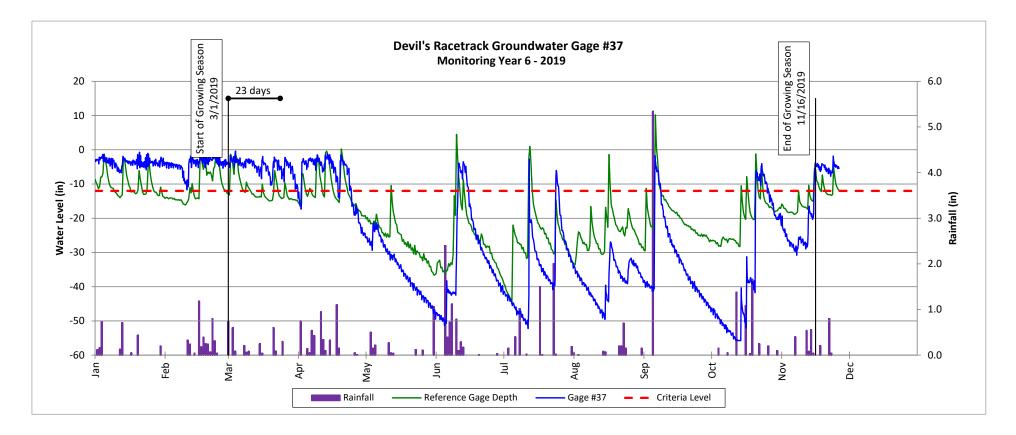


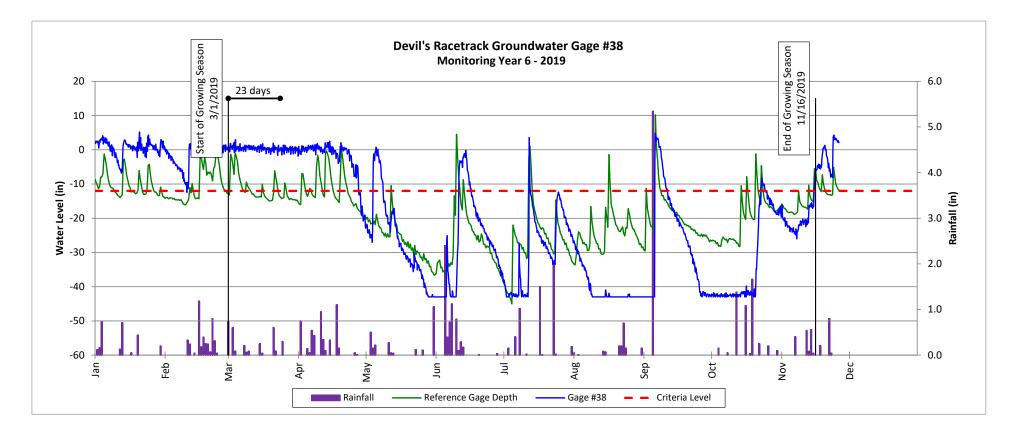


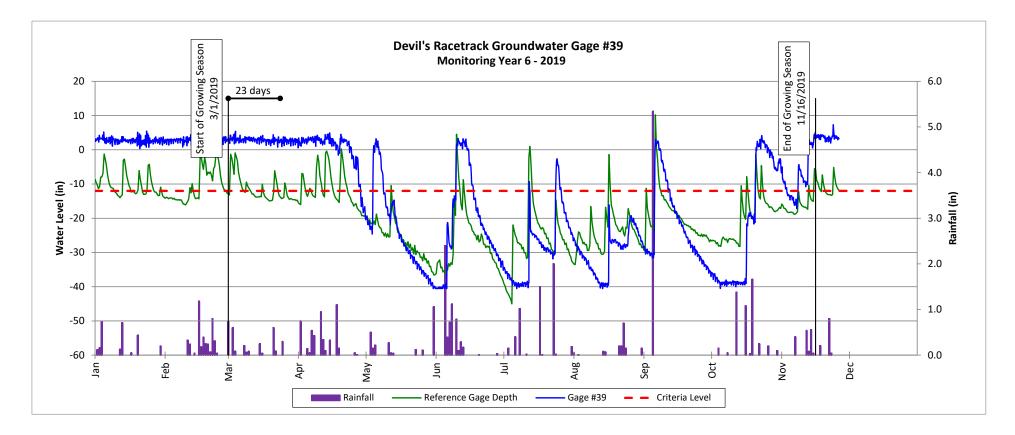


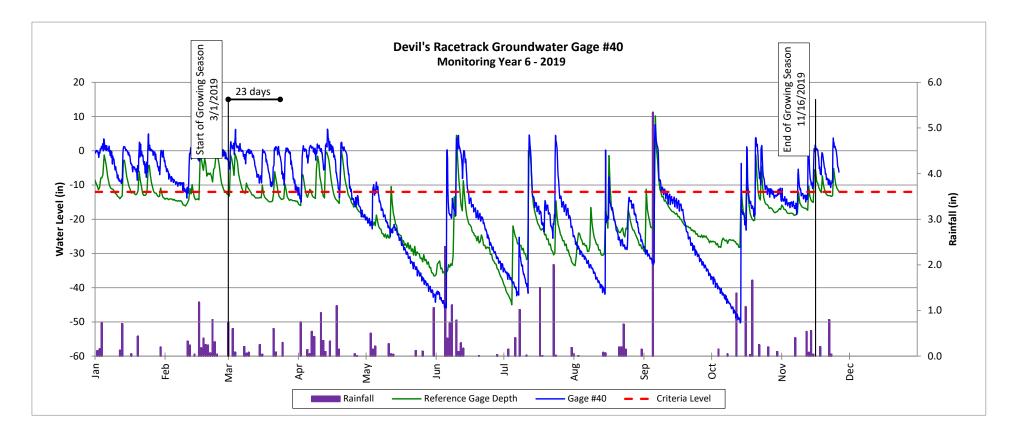


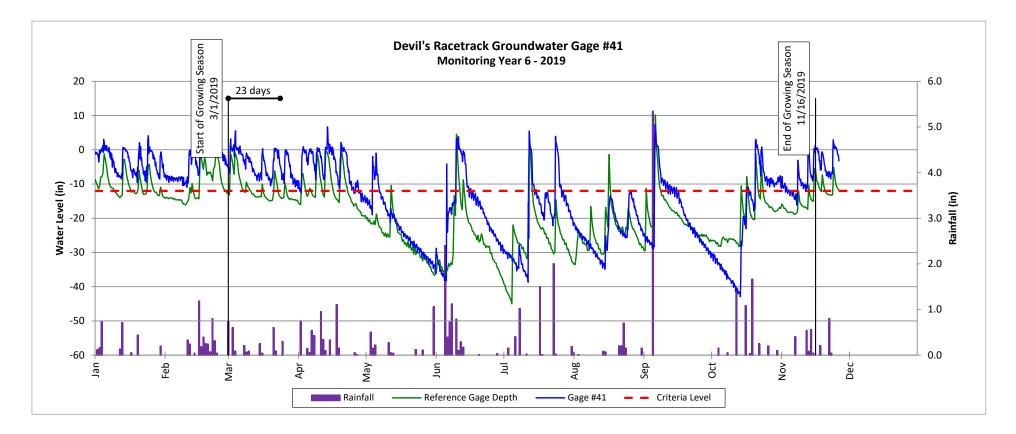


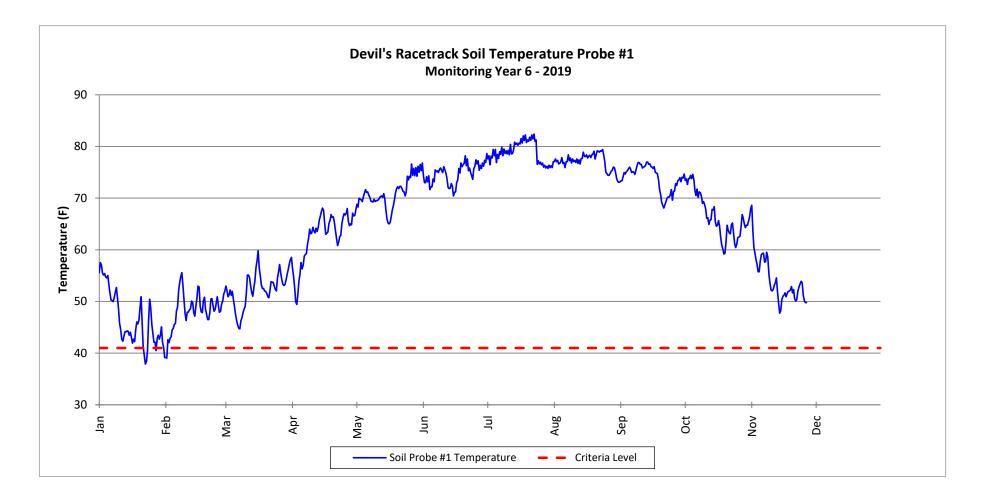




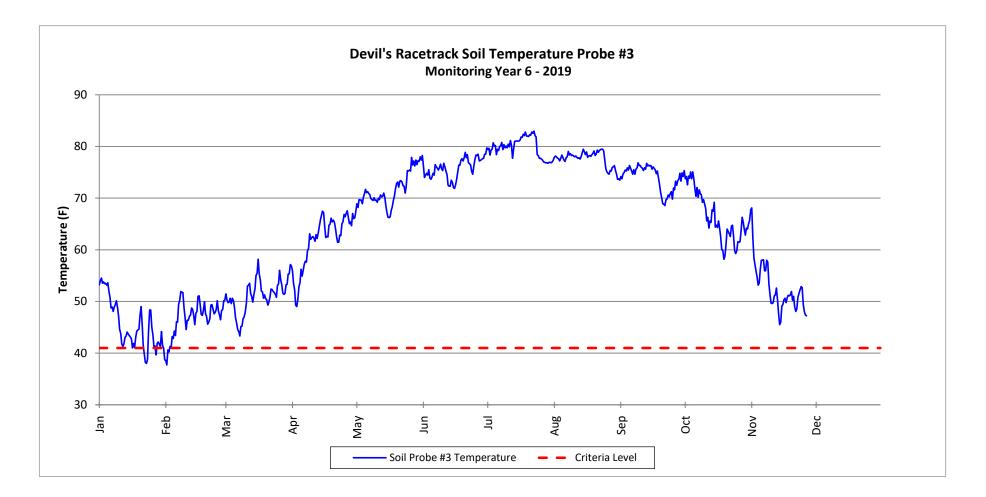


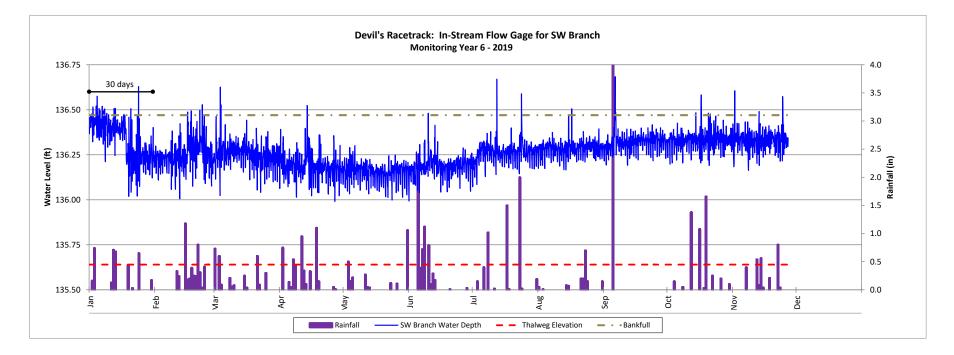


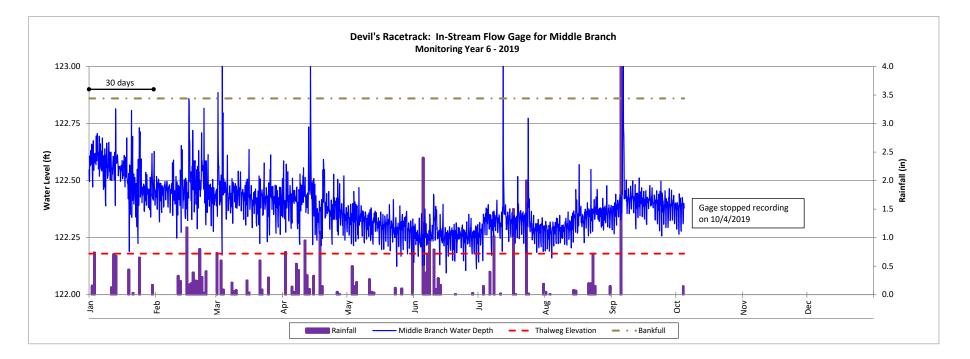


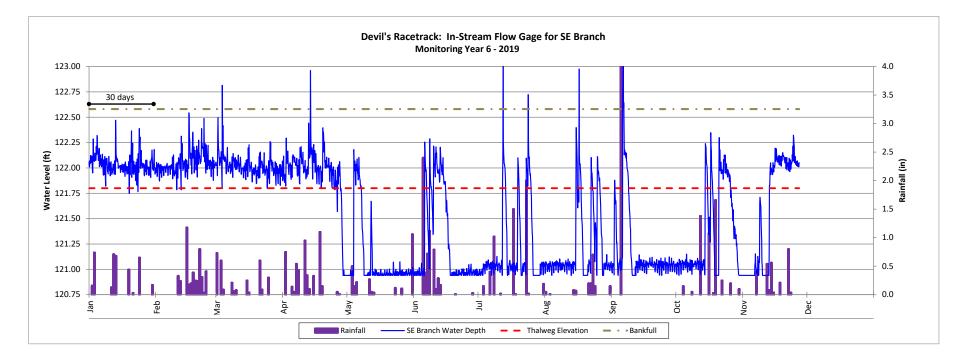




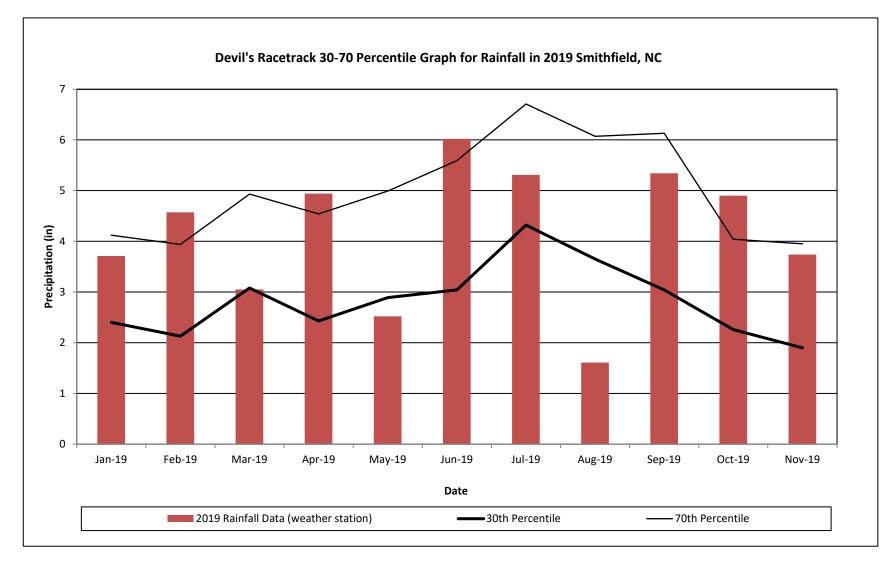

Soil Temperature Probe Plots


Soil Temperature Probe Plots


Soil Temperature Probe Plots

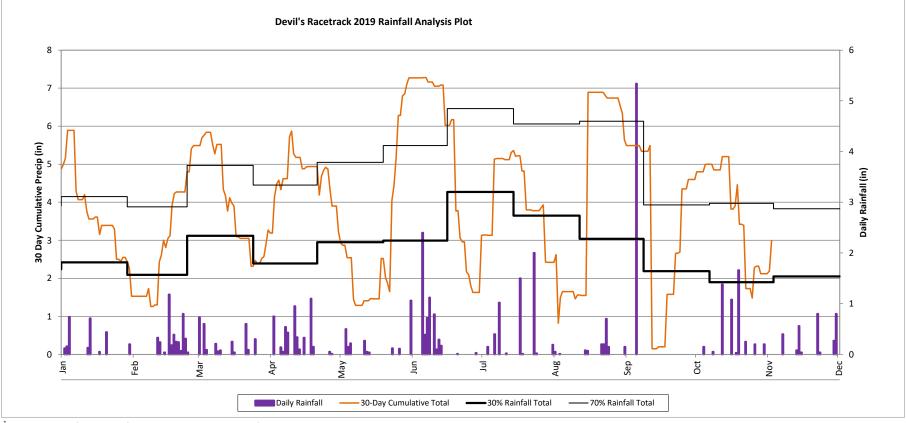

In-Stream Flow Gage Plots

In-Stream Flow Gage Plots

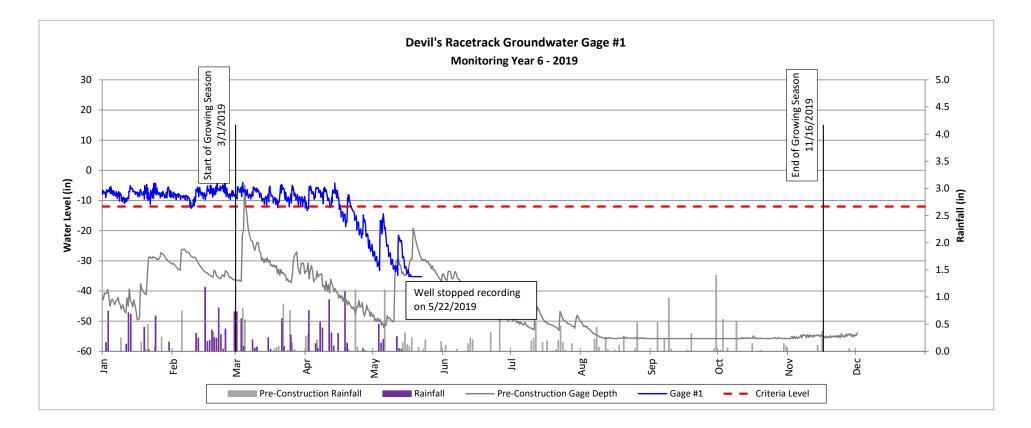


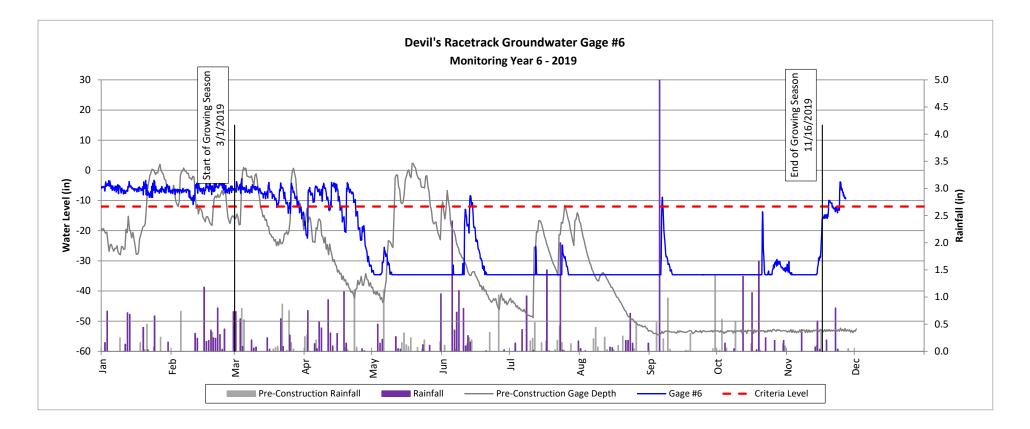
In-Stream Flow Gage Plots

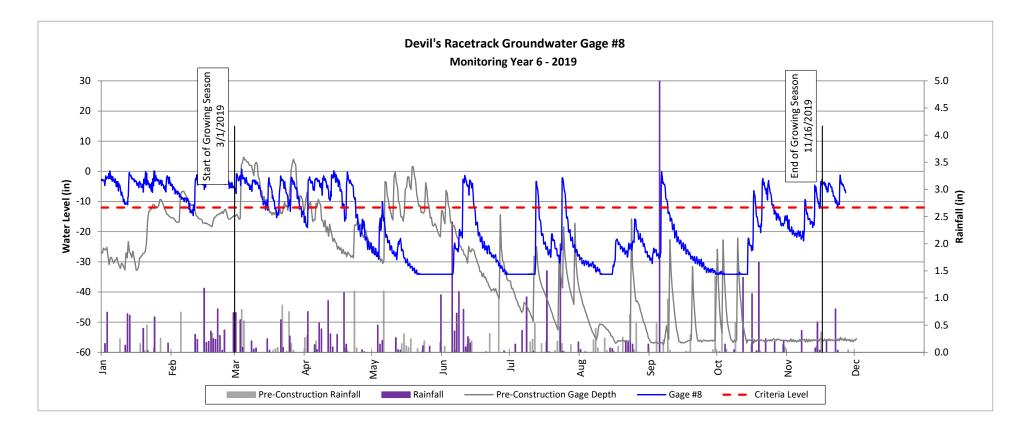
Monthly Rainfall Data

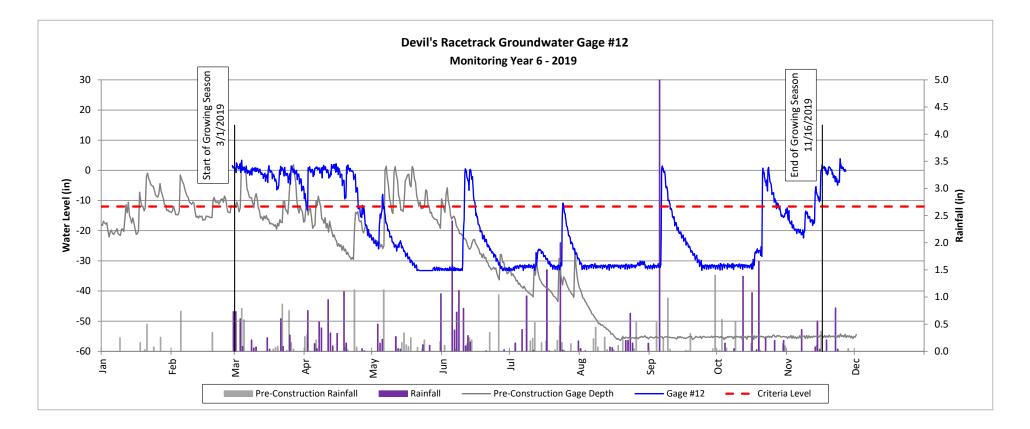

Devil's Racetrack Mitigation Site (DMS Project No. 95021) Monitoring Year 6 - 2019

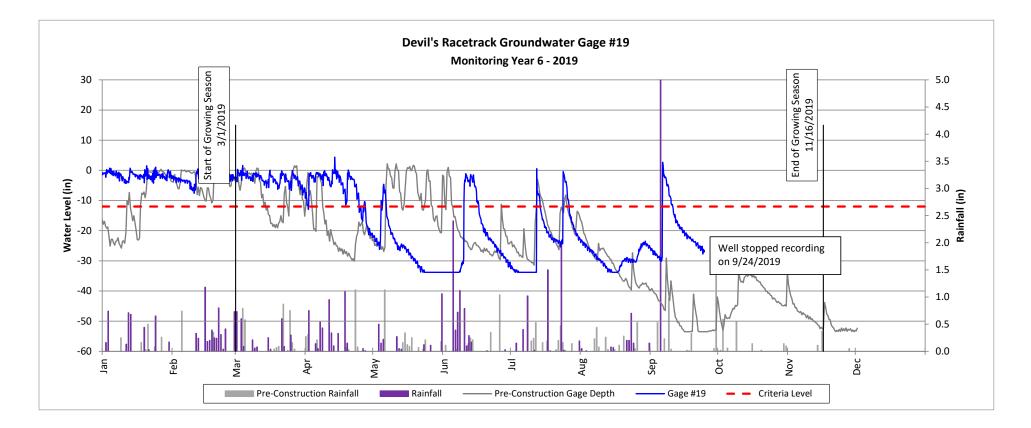
¹ 2019 monthly rainfall collected from USDA weather station 317994 (Smithfield, NC).

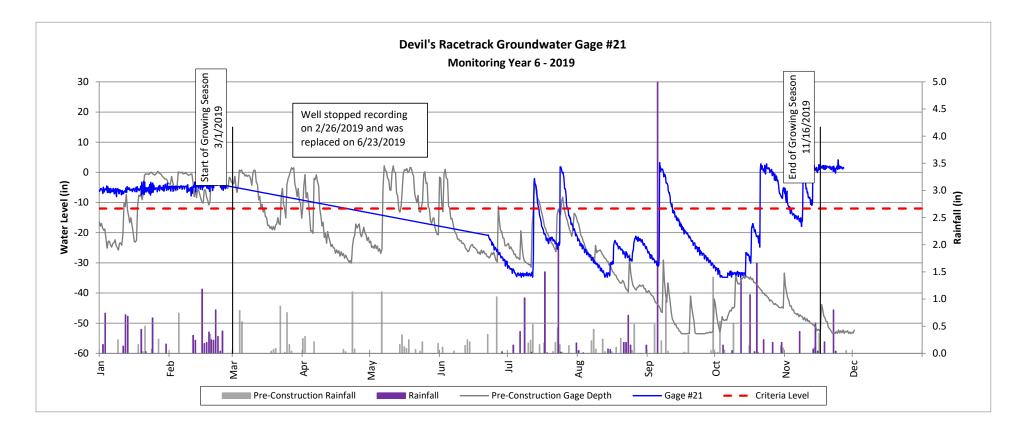

² 30th and 70th percentile rainfall data collected from weather station 317994, in Smithfield, NC (USDA, 1989 - 2019).

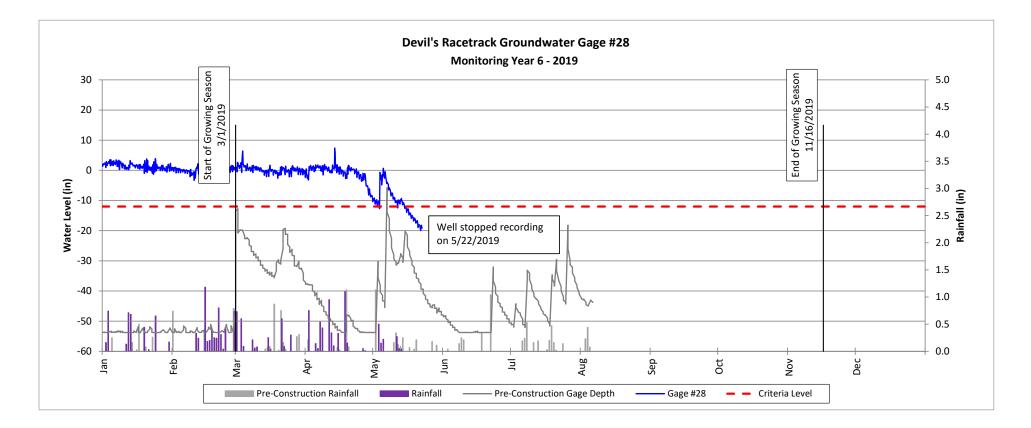


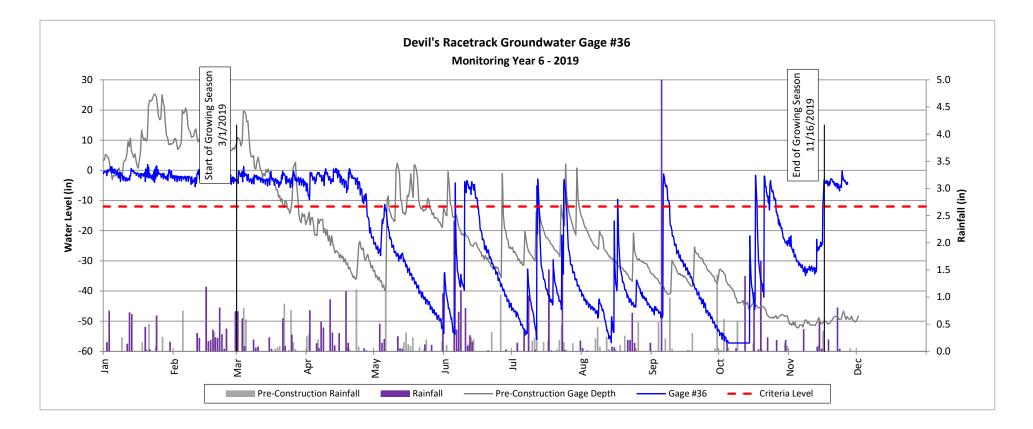


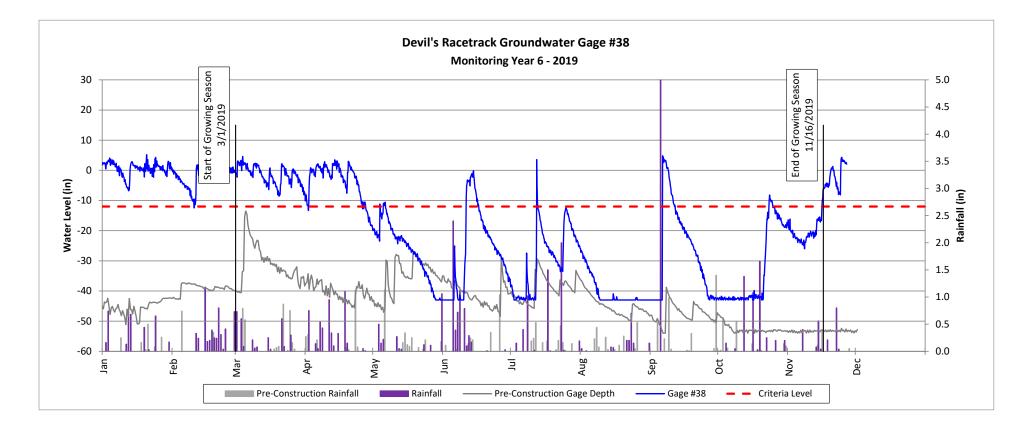

¹ 2019 monthly rainfall collected from weather station 317994 Smithfield, NC.


 2 30th and 70th percentile rainfall data collected from weather station 317994 Smithfield, NC.









Soil & Environmental Consultants, PA

11010 Raven Ridge Road • Raleigh, North Carolina 27614 • Phone; (919) 846-5900 • Fax: (919) 846-9467 www.SandEC.com

DETAILED HYDRIC SOIL INVESTIGATION Devil's Racetrack Mitigation Site Upper Coastal Plain Neuse River Basin Johnston County, North Carolina

Prepared for: Mr. John Hutton Wildlands 312 West Millbrook Road, Suite 225 Raleigh, NC 27609

March 22nd, 2019

INTRODUCTION

Soil & Environmental Consultants, PA (S&EC, PA) was retained to perform a detailed evaluation to assess the presence and extent of (current, i.e. not relic) hydric soil indicators within specific areas of the mitigation site (See attached S&EC Hydric Soil Study Area Map). The solid pink areas have been identified by the IRT as being "at Risk" and the areas outlined in orange are additional areas that Wildlands requested that we evaluate. There are a number of restored streams that dissect the site. The areas evaluated are within a completed wetland restoration project.

METHODOLOGY

On February 26th and March 14th, 2019 Kevin Martin (LSS, PWS) of S&EC, PA performed a soil evaluation at the site. Pits were dug with a sharp shooter and hand auger borings were advanced on the property at locations as appropriate to approximately estimate the location and extent of hydric soils that exhibited hydric soil indicators typically associated with current conditions within the parts of the project area. Each pit boring was evaluated to assess the presence or absence of hydric soil indicators. Hydric soil indicators were identified utilizing the *NRCS Field Indicators of Hydric Soils in the Unities States - A Guide for Identifying and Delineating Hydric Soils (Version 8.2, 2018)* and Redoximorphic Features for Identifying Aquic Conditions, North Carolina Agricultural Research Service, NC State University Raleigh, North Carolina, Technical Bulletin 301 August 2015 which states:

(1)Contemporary redox concentrations (masses, pore linings) should have Hues of (Ferrihydrite) 5YR, (Lepidocrocite) 7.5YR, (Goethite) 7.5YR, 10YR and (Jarosite) 2.5Y. They should not have hues of (Hematite) 10R, 5R, 2.5YR. Such features are associated with ped faces or root channels.

(2) An α , α '-dipyridyl dye can be used to test for iron reduction. A pink color will appear in a few minutes if ferrous iron is present. This indicates that the horizon from which the sample came is reduced for soil classification purposes.

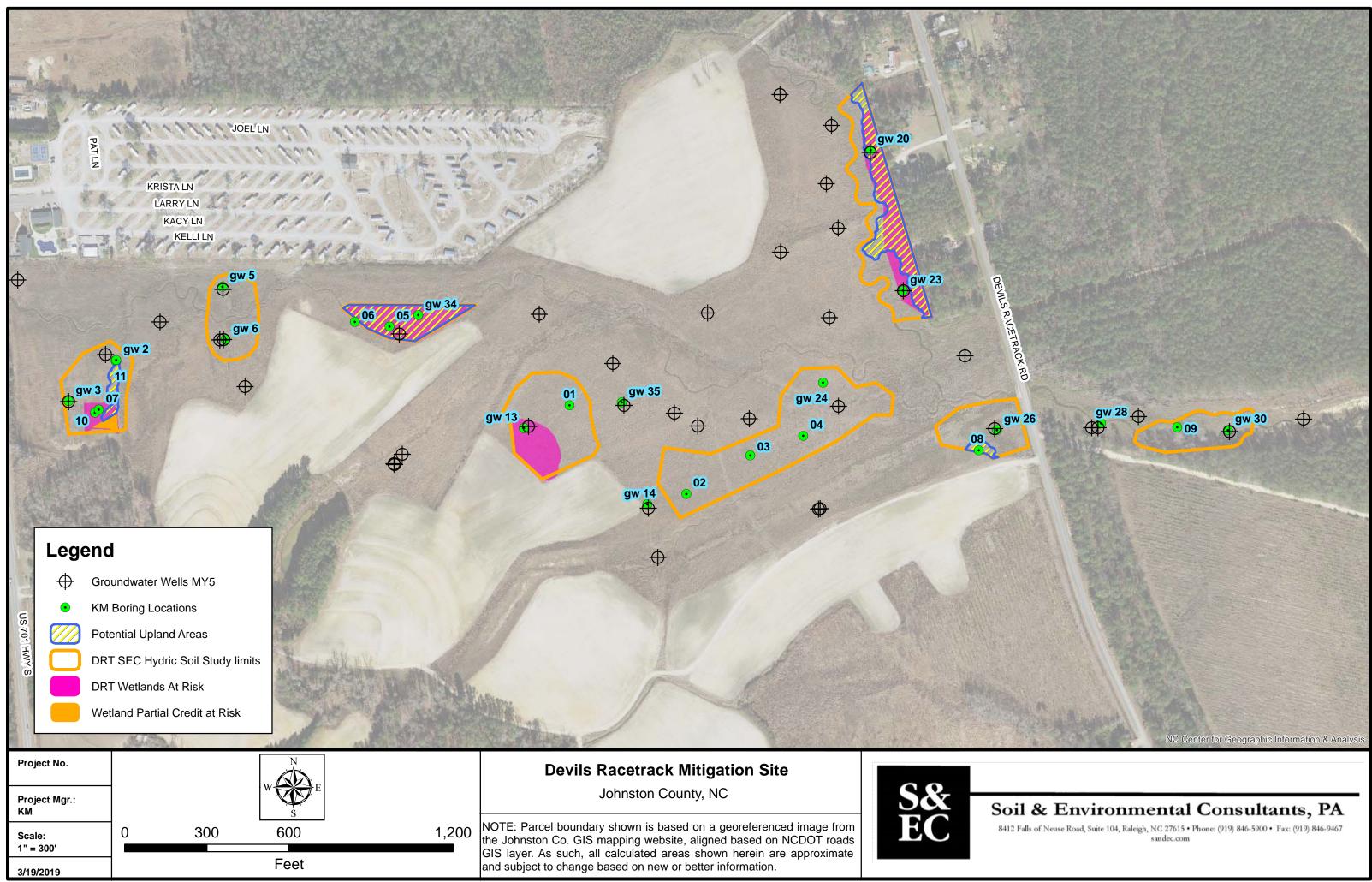
Oxidized rhizospheres were also used in this study because they are acknowledged as a wetland hydrology indicator.

BACKGROUND

Prior to development of the mitigation site, an evaluation was performed by a NC Licensed Soil Scientist to identify areas containing hydric soils. Upon review of the past soil profile description it was noted that none referred to the presence of redox concentrations such as Fe masses or pore linings in the surface layer (A horizon). Therefore, the presence of such features today would indicate a change to a wetter condition significant enough to form such features within the last 5 years. The main hydric soil indicators originally present appear to have been Depleted Matrix (F3), Depleted Below Dark Surface (A11) and/or Redox Dark surface (F6). We did not consider these indicators in our evaluation since they were present prior to restoration and could be indicative of relic conditions.

RESULTS

Twenty five pits and numerous soil borings were performed within the study area. Soil characteristics were evaluated and all areas identified as containing current hydric soil indicators indicative of aquic conditions were identified. The location of each pit is shown on the attached S&EC Devils Racetrack Mitigation Site Map. Where pits were dug adjacent to monitoring wells, they have a GW label that corresponds to the existing well number. Where pits were dug that were not adjacent to an existing monitoring well they are only represented by a number (e.g. 06). Areas where current hydric soil indicators were not observed are labeled as Potential


Upland Areas on the map and are outlined in blue with yellow hatching . An abbreviated soil profile description for each pit and a photo of most pits appear on the attached Aquic Conditions Table. The heading of each photograph indicates the current hydric soil indicators indicative of aquic conditions, if present, and the reaction of an α , α '-dipyridyl test strips.

Conclusions

All but four areas evaluated appear to have hydric soil indicators that represent current aquic conditions, they are:

- (1) The area around pit 5, 6 and GW34. This area contains hydric soils but did not exhibit pore linings or oxidized rhizospheres near the surface. Also, reaction with α , α '-dipyridyl test strips was weak at best and did not stain the soil ped faces.
- (2) The area around pit 8. It does not contain hydric soils.
- (3) The elongated area south of pit 11. This area contains hydric soils, but based on a review of aerial photos taken during and after construction, compacted soil observed and slightly higher elevation difference when compared to the surrounding area, it is believed that this areas was used as a construction access road. Since areas observed on each side of this long narrow strip are meeting aquic conditions, we believe by bringing the surface elevation down so it is the same as adjacent wet areas, this area can be made to meet aquic conditions.
- (4) The elongated area south of GW20. This area contains hydric soils, but is slightly elevated above adjacent areas that are meeting aquic conditions but the ditch along the eastern property line is likely preventing adequate hydrology that would cause aquic conditions.

These areas are outlined in blue with yellow hatching on the attached S&EC Devils Racetrack Mitigation Site Map.

		Matrix		Redox Concentrations						
Sampling	Depth	Color	%	Color	Type, Location	%	Text.	Reaction to	Comment	Date
Location	(in)						Class	α, α' Dipyridyl		
GW 13	0-6	2.5Y 4/1	95	7.5YR 5/8	On ped faces, Pore Linings,	5	SL	Yes		2/26/2019
					Ox. Rhizospheres					
	6-12+	2.5Y 6/2	60	7.5YR 5/8	Masses, Pore Linings	40	SCL	Yes		
GW 35	0-9	2.5Y 4/1	95	7.5YR 5/8	On ped faces, Pore Linings,	5	SL	Yes		2/26/2019
					Ox. Rhizospheres					
	9-12+	2.5Y 6/2	60	7.5YR 5/8	Masses, Pore Linings	40	Lt. SCL	Yes		
01: No description									F3 2" thick,	2/26/2019
taken									Low Chroma	
									within top6"	

GW13 Bt Positive α , α '-dipyridyl

GW13 Oxidized Rhizospheres

GW13 weak Positive $\alpha, \alpha'\text{-dipyridyl}$ Surface and Subsurface

GW13 Weak Positive α , α '-dipyridyl surface

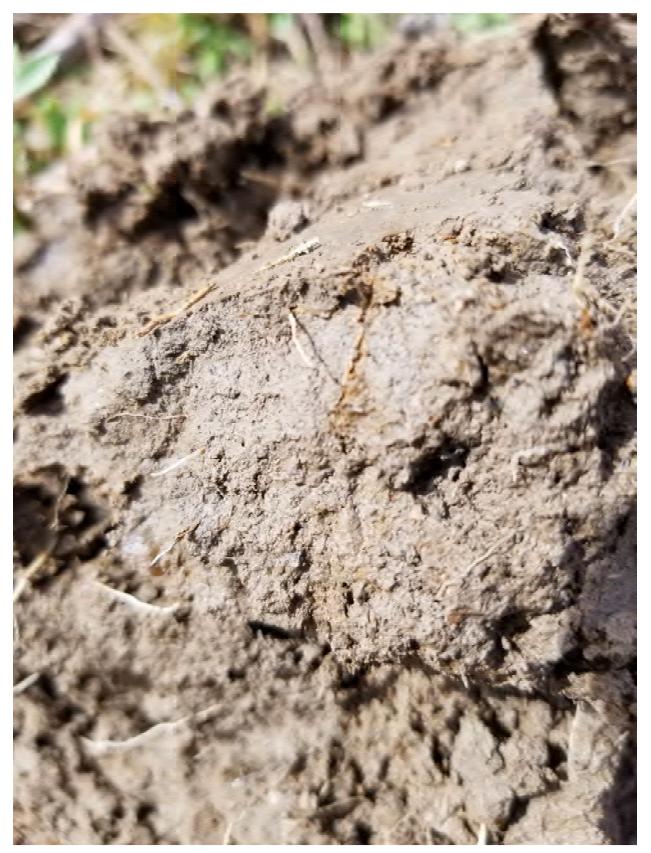
GW35 #2 Positive α , α '-dipyridyl (hard to see due to bright sunlight)

		<u>Matrix</u>		Redox Concentrations						
Sampling Location	Depth (in)	Color	%	Color	Type, Location	%	Text. Class	Reaction to α, α' Dipyridyl	Comment	Date
GW 14	0-7.5	2.5Y 4/1	95	7.5YR 5/8	Pore Linings	5		Weak		2/26/2019
	7.5-12+	2.5Y 6/2	60	7.5YR 5/8	Masses	40		Weak		
02	0-6	2.5Y 4/2	95	7.5YR 4/4	Pore Linings, Ox. Rhizospheres	5	CL	Yes		2/26/2019
	6-12+	10YR 5/1	75	7.5YR 4/6	Pore Linings	25	CL			
03	0-7	10YR 5/2	90	7.5YR 3/4	Masses, Pore Linings, Ox. Rhizospheres	10	SCL	Yes		2/26/2019
	7-12+	2.5Y 4/2	80	5YR 4/6	Masses, Pore Linings	20	CL			
04	0-12+	2.5Y 4/2	80	5YR 4/6	Masses, Pore Linings, Ox. Rhizospheres	20	CL	Yes	Similar to 03 Subsurface	2/26/2019
GW 24	0-7	2.5Y 3/2	98		Masses, Pore Linings, Ox. Rhizospheres, all few to very few	2	SL	Yes	Approx. 100' N of location shown on map	2/26/2019
	7-12+	2.5Y 6/2	60	10YR 8/8	Masses	10	Lt. SCL		·	
				2.5Y 6/3	Masses	30				

GW14 #2 Pore linings, small Masses but no Oxidized Rhizospheres

GW14 Weak Positive $\alpha,\,\alpha'\text{-dipyridyl}$ surface and subsurface

B2 Positive α , α '-dipyridyl


B2 Oxidized Rhizoshperes

B3 Positive α , α '-dipyridyl

B3 Oxidized Rhizoshperes & Pore Linings

B4 Positive α , α '-dipyridyl

GW24 #2 Positive α , α '-dipyridyl

GW24 Positive α , α '-dipyridyl

		Matri	x		Redox Concentrations					
Sampling	Depth	Color	%	Color	Type, Location	%	Text.	Reaction to	Comment	Date
Location	(in)						Class	α, α' Dipyridyl		
GW 34	0-9.5	10YR 4/1	95	7.5YR 4/6	Masses	5	SCL	Weak		2/26/2019
	9.5-12+	2.5Y 6/1	80	7.5YR 4/6		20	SCL			
05	0-6	2.5Y 5/3	100				SCL	Weak, did not stain soil	Fe conc.'s increasing w/ depth	2/26/2019
	6-12+	2.5 4/1	85	5YR 4/4	Masses	15	SCL	Weak, did not stain soil		
06	0-9.5	10YR 4/1	95	7.5YR 4/6	Masses	5	SCL	Weak	Similar to GW 34	2/26/2019
	9.5-12+	2.5Y 6/1	80	7.5YR 4/6		20	SCL			
GW 6	0-12+	2.5Y 4/1	80	5YR 3/4	Masses, few Ox. Rhizospheres	20	SCL	Yes		2/26/2019
GW5	0-12+	2.5Y 4/1	80	5YR 3/4	Masses, few Ox. Rhizospheres, On ped faces	20	SCL	Yes		2/26/2019

GW34 Positive α , α '-dipyridyl

B5 0-6" Positive α , α '-dipyridyl

B5 6-12+" Positive α , α '-dipyridyl

GW6 Positive α , α '-dipyridyl

GW5 pedface soft masses

		Matrix		Redox Concentrations						
Sampling Location	Depth (in)	Color	%	Color	Type, Location	%	Text. Class	Reaction to	Comment	Date
GW 26	(in) 0-3	10YR 5/2	65	2.5Y 5/3	Masses, Ox. Rhizospheres	30	SCL	α, α' Dipyridyl Yes		3/14/2019
011 20	0-3	10111 3/2	05	7.5YR 4/6	Pore Linings	5	JCL	163		5/14/2015
	3-12+	10YR 4/1	95	2.5YR 4/4	Masses	5	SCL	Yes		
08	0-3	10YR 4/2	100							3/14/2019
	3-12+	2.5Y 6/4	60	7.5YR 5/8	Masses	10	SL			
				2.5Y 5/2	Pore Linings	30	Lt. SCL			
GW 30	0-3	10YR 5/2	65	2.5Y 5/3	Masses, Ox. Rhizospheres	30	SCL	Yes	Same as GW26	3/14/2019
				7.5YR 4/6	Pore Linings	5				
	3-11	10YR 4/1	75	5YR 3/4	Masses	25	SCL			
09	0-5	2.5Y 4/1	70	7.5YR 4/6	On ped faces, Pore Linings, Ox. Rhizospheres	30	SCL	Yes		3/14/2019
	5-13	10YR 5/1	85	7.5YR 4/6	Masses	15				
GW 28	0-3	10YR 5/2	65	2.5Y 5/3	Masses, Ox. Rhizospheres	30	SCL	Yes	Same as GW30	3/14/2019
				7.5YR 4/6	Pore Linings	5				
	3-11	10YR 4/1	75	5YR 3/4	On ped faces, Masses	25	SCL			

GW26 Positive α , α '-dipyridyl

B8 no redox

GW30 surface #2 Oxidized rhizospheres and Pore Linings

GW30 surface Positive α , α '-dipyridyl

GW30 subsurface Masses on Ped Faces

B9 surface #2 Pore Linings

B9 surface Positive α , α '-dipyridyl

		Matrix		Redox Concentrations						
Sampling Location	Depth (in)	Color	%	Color	Type, Location	%	Text. Class	Reaction to α, α' Dipyridyl	Comment	Date
GW 23	0-8	2.5Y 3/1	97		Few Pore Linings, Few Ox. Rhizospheres	3	Lt. SCL	Yes		3/14/2019
	8-12+	10YR 6/2	90	10YR 5/8	Masses	10	SCL			
GW 20	0-8	2.5Y 5/2 or 2.5Y5/3	95	7.5YR 4/6	Few pore linings	5	SCL	No		3/14/2019
	8-12+	2.5Y 5/1		7.5YR 4/6	Few Pore Linings, Few Ox. Rhizospheres		SCL	Yes		

GW20 Negative α , α '-dipyridyl surface

GW20 surface

GW20 subsurface Positive α , α '-dipyridyl

		Matrix		Redox Concentrations						
Sampling	Depth	Color	%	Color	Type, Location	%	Text.	Reaction to	Comment	Date
Location	(in)						Class	α, α' Dipyridyl		
GW3: No de	GW3: No description									2/26/2019
taken. Extr	emely									
compacted	to 3									
inches.										
07: No desc	ription									2/26/2019
taken. Extr	emely									
compacted	to 3									
inches										
GW2: No de	•									2/26/2019
taken. Only										
inundated a										
not represe										
surrounding	B									
conditions										
10	0-3	2.5Y 4/1	90	7.5YR 4/6	Pore Linings, Ox.	10	SCL	Yes		3/14/2019
					Rhizospheres					
	3-12+	2.5Y 4/1	85	5YR 3/4	On ped face, Pore Linings	15	SCL	Yes		
11	0-6	2.5Y 5/2	98		Very few Pore linings	2	SCL	Yes		3/14/2019
	6-12+	2.5Y 4/1	70	10YR 4/6	Masses	30	SCL	Yes	Compacted	

Near GW2 (Compacted area possibly due to old construction access, not meeting aquic conditions)

B10 subsurface Positive α , α '-dipyridyl

B10 surface #2 Pore Linings and Oxidized rhizospheres

B10 surface Positive α , α '-dipyridyl

B11 no rhizosphers or Pore linings surface

B11 subsurface Positive α , α '-dipyridyl

B11 surface Positive α , α '-dipyridyl

